Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796361

RESUMO

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Assuntos
Astenozoospermia , Tupaia , Animais , Masculino , Macaca fascicularis , Primatas , Sêmen , Motilidade dos Espermatozoides , Tupaiidae
2.
Am J Hum Genet ; 108(8): 1466-1477, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34237282

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF)-induced asthenoteratozoospermia is a common cause of male infertility. Previous studies have identified several MMAF-associated genes, highlighting the condition's genetic heterogeneity. To further define the genetic causes underlying MMAF, we performed whole-exome sequencing in a cohort of 643 Chinese MMAF-affected men. Bi-allelic DNAH10 variants were identified in five individuals with MMAF from four unrelated families. These variants were either rare or absent in public population genome databases and were predicted to be deleterious by multiple bioinformatics tools. Morphological and ultrastructural analyses of the spermatozoa obtained from men harboring bi-allelic DNAH10 variants revealed striking flagellar defects with the absence of inner dynein arms (IDAs). DNAH10 encodes an axonemal IDA heavy chain component that is predominantly expressed in the testes. Immunostaining analysis indicated that DNAH10 localized to the entire sperm flagellum of control spermatozoa. In contrast, spermatozoa from the men harboring bi-allelic DNAH10 variants exhibited an absence or markedly reduced staining intensity of DNAH10 and other IDA components, including DNAH2 and DNAH6. Furthermore, the phenotypes were recapitulated in mouse models lacking Dnah10 or expressing a disease-associated variant, confirming the involvement of DNAH10 in human MMAF. Altogether, our findings in humans and mice demonstrate that DNAH10 is essential for sperm flagellar assembly and that deleterious bi-allelic DNAH10 variants can cause male infertility with MMAF. These findings will provide guidance for genetic counseling and insights into the diagnosis of MMAF-associated asthenoteratozoospermia.


Assuntos
Astenozoospermia/complicações , Modelos Animais de Doenças , Dineínas/genética , Infertilidade Masculina/patologia , Mutação , Fenótipo , Espermatozoides/patologia , Alelos , Animais , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/metabolismo , Sequenciamento do Exoma
3.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33472045

RESUMO

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Assuntos
Astenozoospermia/genética , Infertilidade Masculina/genética , Animais , Astenozoospermia/patologia , Astenozoospermia/fisiopatologia , Estudos de Coortes , Feminino , Deleção de Genes , Genes Ligados ao Cromossomo X , Hemizigoto , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura , Sequenciamento do Exoma
4.
Mol Genet Genomics ; 299(1): 84, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223386

RESUMO

Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg2+ binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.


Assuntos
Azoospermia , Sequenciamento do Exoma , Homozigoto , Mutação de Sentido Incorreto , Linhagem , Irmãos , Adulto , Animais , Humanos , Masculino , Camundongos , Azoospermia/genética , Azoospermia/patologia , Consanguinidade , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Paquistão , RNA Helicases/genética
5.
Mol Genet Genomics ; 299(1): 35, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489045

RESUMO

Asthenoteratospermia is a significant cause of male infertility. FAM71D (Family with sequence similarity 71, member D), as a novel protein exclusively expressed in the testis, has been found to be associated with sperm motility. However, the association of FAM71D mutation with male infertility has yet to be examined. Here, we conducted whole-exome sequencing and identified a homozygous missense mutation c.440G > A (p. Arg147Gln) of FAM71D in an asthenoteratospermia-affected man from a consanguineous family. The FAM71D variant is extremely rare in human population genome databases and predicted to be deleterious by multiple bioinformatics tools. Semen analysis indicated decreased sperm motility and obvious morphological abnormalities in sperm cells from the FAM71D-deficient man. Immunofluorescence assays revealed that the identified FAM71D mutation had an important influence on the assembly of sperm structure-related proteins. Furthermore, intra-cytoplasmic sperm injection (ICSI) treatment performed on the infertile man with FAM71D variant achieved a satisfactory outcome. Overall, our study identified FAM71D as a novel causative gene for male infertility with asthenoteratospermia, for which ICSI treatment may be suggested to acquire good prognosis. All these findings will provide effective guidance for genetic counselling and assisted reproduction treatments of asthenoteratospermia-affected subjects.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Motilidade dos Espermatozoides , Espermatozoides , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Testículo/metabolismo , Mutação
6.
J Med Genet ; 60(8): 827-834, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36593121

RESUMO

BACKGROUND: Spermatogenic impairments can lead to male infertility by different pathological conditions, such as multiple morphological abnormalities of the sperm flagella (MMAF) and non-obstructive azoospermia (NOA). Genetic factors are involved in impaired spermatogenesis. METHODS AND RESULTS: Here, we performed genetic analyses through whole-exome sequencing in a cohort of 334 Han Chinese probands with severe MMAF or NOA. Biallelic variants of CFAP54 were identified in three unrelated men, including one homozygous frameshift variant (c.3317del, p.Phe1106Serfs*19) and two compound heterozygous variants (c.878G>A, p.Arg293His; c.955C>T, p.Arg319Cys and c.4885C>T, p.Arg1629Cys; c.937G>A, p.Gly313Arg). All of the identified variants were absent or extremely rare in the public human genome databases and predicted to be damaging by bioinformatic tools. The men harbouring CFAP54 mutations exhibited abnormal sperm morphology, reduced sperm concentration and motility in ejaculated semen. Significant axoneme disorganisation and other ultrastructure abnormities were also detected inside the sperm cells from men harbouring CFAP54 mutations. Furthermore, immunofluorescence assays showed remarkably reduced staining of four flagellar assembly-associated proteins (IFT20, IFT52, IFT122 and SPEF2) in the spermatozoa of CFAP54-deficient men. Notably, favourable clinical pregnancy outcomes were achieved with sperm from men carrying CFAP54 mutations after intracytoplasmic sperm injection treatment. CONCLUSION: Our genetic analyses and experimental observations revealed that biallelic deleterious mutations of CFAP54 can induce severe MMAF and NOA in humans.


Assuntos
Azoospermia , Proteínas do Citoesqueleto , Infertilidade Masculina , Feminino , Humanos , Masculino , Gravidez , Azoospermia/patologia , Infertilidade Masculina/patologia , Mutação , Cauda do Espermatozoide/patologia , Espermatozoides/patologia , Proteínas do Citoesqueleto/genética
7.
J Med Genet ; 60(2): 137-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228300

RESUMO

BACKGROUND: As a common type of asthenoteratozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF) can cause male infertility. Previous studies have revealed genetic factors as a major cause of MMAF. The known MMAF-associated genes are involved in the mitochondrial sheath, outer dense fibre or axoneme of the sperm flagella. These findings indicate the genetic heterogeneity of MMAF. METHODS AND RESULTS: Here, we conducted genetic analyses using whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of AKAP3 (A-kinase anchoring protein 3) were identified in two MMAF-affected men from unrelated families. One AKAP3 variant was a frameshift (c.2286_2287del, p.His762Glnfs*22) and the other variant was a missense mutation (c.44G>A, p.Cys15Tyr), which was predicted to be damaging by multiple bioinformatics tools. Further western blotting and immunofluorescence assays revealed the absence of AKAP3 in the spermatozoa from the man harbouring the homozygous frameshift variant, whereas the expression of AKAP3 was markedly reduced in the spermatozoa of the man with the AKAP3 missense variant p.Cys15Tyr. Notably, the clinical outcomes after intracytoplasmic sperm injection (ICSI) were divergent between these two cases, suggesting a possibility of AKAP3 dosage-dependent prognosis of ICSI treatment. CONCLUSIONS: Our study revealed AKAP3 as a novel gene involved in human asthenoteratozoospermia.


Assuntos
Anormalidades Múltiplas , Astenozoospermia , Infertilidade Masculina , Masculino , Humanos , Astenozoospermia/genética , Mutação , Sêmen/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Anormalidades Múltiplas/genética , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo
8.
Am J Hum Genet ; 107(2): 330-341, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619401

RESUMO

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.


Assuntos
Anormalidades Múltiplas/genética , Dineínas do Axonema/genética , Flagelos/genética , Variação Genética/genética , Infertilidade Masculina/genética , Cauda do Espermatozoide/patologia , Alelos , Animais , Estudos de Coortes , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/anormalidades , Testículo/anormalidades , Sequenciamento do Exoma/métodos
9.
Am J Hum Genet ; 107(3): 514-526, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32791035

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. Although recent studies have revealed several MMAF-associated genes and demonstrated MMAF to be a genetically heterogeneous disease, at least one-third of the cases are still not well understood for their etiology. Here, we identified bi-allelic loss-of-function variants in CFAP58 by using whole-exome sequencing in five (5.6%) unrelated individuals from a cohort of 90 MMAF-affected Chinese men. Each of the men harboring bi-allelic CFAP58 variants presented typical MMAF phenotypes. Transmission electron microscopy demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. CFAP58 is predominantly expressed in the testis and encodes a cilia- and flagella-associated protein. Immunofluorescence assays showed that CFAP58 localized at the entire flagella of control sperm and predominantly concentrated in the mid-piece. Immunoblotting and immunofluorescence assays showed that the abundances of axoneme ultrastructure markers SPAG6 and SPEF2 and a mitochondrial sheath protein, HSP60, were significantly reduced in the spermatozoa from men harboring bi-allelic CFAP58 variants. We generated Cfap58-knockout mice via CRISPR/Cas9 technology. The male mice were infertile and presented with severe flagellar defects, consistent with the sperm phenotypes in MMAF-affected men. Overall, our findings in humans and mice strongly suggest that CFAP58 plays a vital role in sperm flagellogenesis and demonstrate that bi-allelic loss-of-function variants in CFAP58 can cause axoneme and peri-axoneme malformations leading to male infertility. This study provides crucial insights for understanding and counseling of MMAF-associated asthenoteratozoospermia.


Assuntos
Anormalidades Múltiplas/genética , Astenozoospermia/genética , Axonema/genética , Infertilidade Masculina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Anormalidades Múltiplas/patologia , Alelos , Animais , Astenozoospermia/fisiopatologia , Axonema/patologia , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Homozigoto , Humanos , Infertilidade Masculina/patologia , Mutação com Perda de Função/genética , Perda de Heterozigosidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Mitocôndrias/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Testículo/metabolismo , Testículo/patologia , Sequenciamento do Exoma
10.
J Med Genet ; 59(7): 710-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34348960

RESUMO

BACKGROUND: Oligoasthenoteratozoospermia is a typical feature of sperm malformations leading to male infertility. Only a few genes have been clearly identified as pathogenic genes of oligoasthenoteratozoospermia. METHODS AND RESULTS: Here, we identified a homozygous frameshift variant (c.731dup, p.Asn244Lysfs*3) in CCDC34, which is preferentially expressed in the human testis, using whole-exome sequencing in a cohort of 100 Chinese men with multiple morphological abnormalities of the sperm flagella (MMAF). In an additional cohort of 167 MMAF-affected men from North Africa, Iran and France, we identified a second subject harbouring a homozygous CCDC34 frameshift variant (c.799_817del, p.Glu267Lysfs*72). Both affected men presented a typical MMAF phenotype with an abnormally low sperm concentration (ie, oligoasthenoteratozoospermia). Transmission electron microscopy analysis of the sperm flagella affected by CCDC34 deficiency further revealed dramatic disorganisation of the axoneme. Immunofluorescence assays of the spermatozoa showed that CCDC34 deficiency resulted in almost absent staining of CCDC34 and intraflagellar transport-B complex-associated proteins (such as IFT20 and IFT52). Furthermore, we generated a mouse Ccdc34 frameshift mutant using CRISPR-Cas9 technology. Ccdc34-mutated (Ccdc34mut/mut ) male mice were sterile and presented oligoasthenoteratozoospermia with typical MMAF anomalies. Intracytoplasmic sperm injection has good pregnancy outcomes in both humans and mice. CONCLUSIONS: Our findings support that CCDC34 is crucial to the formation of sperm flagella and that biallelic deleterious mutations in CCDC34/Ccdc34 cause male infertility with oligoasthenoteratozoospermia in humans and mice.


Assuntos
Astenozoospermia , Infertilidade Masculina , Proteínas de Neoplasias , Oligospermia , Animais , Antígenos de Neoplasias , Astenozoospermia/genética , Astenozoospermia/patologia , Feminino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Mutação/genética , Proteínas de Neoplasias/genética , Oligospermia/genética , Oligospermia/patologia , Gravidez , Sêmen , Espermatozoides/patologia , Testículo/patologia
11.
Am J Hum Genet ; 105(6): 1168-1181, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735294

RESUMO

As a type of severe asthenoteratospermia, multiple morphological abnormalities of the flagella (MMAF) are characterized by the presence of immotile spermatozoa with severe flagellar malformations. MMAF is a genetically heterogeneous disorder, and the known MMAF-associated genes can only account for approximately 60% of human MMAF cases. Here we conducted whole-exome sequencing and identified bi-allelic truncating mutations of the TTC29 (tetratricopeptide repeat domain 29) gene in three (3.8%) unrelated cases from a cohort of 80 MMAF-affected Han Chinese men. TTC29 is preferentially expressed in the testis, and TTC29 protein contains the tetratricopeptide repeat domains that play an important role in cilia- and flagella-associated functions. All of the men harboring TTC29 mutations presented a typical MMAF phenotype and dramatic disorganization in axonemal and/or other peri-axonemal structures. Immunofluorescence assays of spermatozoa from men harboring TTC29 mutations showed deficiency of TTC29 and remarkably reduced staining of intraflagellar-transport-complex-B-associated proteins (TTC30A and IFT52). We also generated a Ttc29-mutated mouse model through the use of CRISPR-Cas9 technology. Remarkably, Ttc29-mutated male mice also presented reduced sperm motility, abnormal flagellar ultrastructure, and male subfertility. Furthermore, intracytoplasmic sperm injections performed for Ttc29-mutated mice and men harboring TTC29 mutations consistently acquired satisfactory outcomes. Collectively, our experimental observations in humans and mice suggest that bi-allelic mutations in TTC29, as an important genetic pathogeny, can induce MMAF-related asthenoteratospermia. Our study also provided effective guidance for clinical diagnosis and assisted reproduction treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais , Estudos de Casos e Controles , Terapia Combinada , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
12.
Mol Genet Genomics ; 297(6): 1601-1613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002593

RESUMO

Hereditary neurological disorders (HNDs) are a clinically and genetically heterogeneous group of disorders. These disorders arise from the impaired function of the central or peripheral nervous system due to aberrant electrical impulses. More than 600 various neurological disorders, exhibiting a wide spectrum of overlapping clinical presentations depending on the organ(s) involved, have been documented. Owing to this clinical heterogeneity, diagnosing these disorders has been a challenge for both clinicians and geneticists and a large number of patients are either misdiagnosed or remain entirely undiagnosed. Contribution of genetics to neurological disorders has been recognized since long; however, the complete picture of the underlying molecular bases are under-explored. The aim of this study was to accurately diagnose 11 unrelated Pakistani families with various HNDs deploying NGS as a first step approach. Using exome sequencing and gene panel sequencing, we successfully identified disease-causing genomic variants these families. We report four novel variants, one each in, ECEL1, NALCN, TBR1 and PIGP in four of the pedigrees. In the rest of the seven families, we found five previously reported pathogenic variants in POGZ, FA2H, PLA2G6 and CYP27A1. Of these, three families segregate a homozygous 18 bp in-frame deletion of FA2H, indicating a likely founder mutation segregating in Pakistani population. Genotyping for this mutation can help low-cost population wide screening in the corresponding regions of the country. Our findings not only expand the existing repertoire of mutational spectrum underlying neurological disorders but will also help in genetic testing of individuals with HNDs in other populations.


Assuntos
Doenças do Sistema Nervoso , Humanos , Linhagem , Sequenciamento do Exoma , Homozigoto , Mutação , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Metaloendopeptidases , Transposases
13.
Reprod Biomed Online ; 42(5): 963-972, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33771466

RESUMO

RESEARCH QUESTION: Multiple morphological abnormalities of the flagella (MMAF) is characterized by excessive immotile spermatozoa with severe flagellar abnormalities in the ejaculate. Previous studies have reported a heterogeneous genetic profile associated with MMAF. What other genetic variants might explain the cause of MMAF? DESIGN: Whole-exome sequencing was conducted in a cohort of 90 Chinese patients with MMAF. The pathogenicity of identified mutations was assessed through electron microscopy and immunofluorescent examinations. RESULTS: Three unrelated men with bi-allelic DNAH2 variants were identified. Sanger sequencing verified that the six novel variants originated from every parent. All these variants were located at the conserved domains of DNAH2 and predicted to be deleterious by bioinformatic tools. Haematoxylin and eosin staining and scanning electron microscopy revealed that spermatozoa harbouring DNAH2 variants displayed severely aberrant morphology mainly with absent and short flagella (≥78%). Moreover, transmission electron microscopy revealed the obvious absence of a central pair of microtubules and inner dynein arms in the spermatozoa with mutated DNAH2. Immunofluorescence data further validated these findings, showing reduced DNAH2 protein expression in the spermatozoa with DNAH2 variants, compared with normal spermatozoa. Intracytoplasmic sperm injection using spermatozoa from the three men with mutated DNAH2 resulted in blastocyst formation in all cases. Embryo transfer was carried out in two couples, both resulting in clinical pregnancy. CONCLUSIONS: These experimental and clinical data suggest that bi-allelic DNAH2 variants might induce MMAF-associated asthenoteratozoospermia, which can be overcome through intracytoplasmic sperm injection. These findings contribute to the knowledge of the genetic landscape of asthenoteratozoospermia and clinical counselling of male infertility.


Assuntos
Astenozoospermia/genética , Dineínas do Axonema/genética , Adulto , Astenozoospermia/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Gravidez , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide/ultraestrutura , Sequenciamento do Exoma
14.
J Med Genet ; 57(1): 31-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048344

RESUMO

BACKGROUND: Male infertility due to multiple morphological abnormalities of the sperm flagella (MMAF) is a genetically heterogeneous disorder. Previous studies revealed several MMAF-associated genes, which account for approximately 60% of human MMAF cases. The pathogenic mechanisms of MMAF remain to be illuminated. METHODS AND RESULTS: We conducted genetic analyses using whole-exome sequencing in 50 Han Chinese probands with MMAF. Two homozygous stop-gain variants (c.910C>T (p.Arg304*) and c.3400delA (p.Ile1134Serfs*13)) of the SPEF2 (sperm flagellar 2) gene were identified in two unrelated consanguineous families. Consistently, an Iranian subject from another cohort also carried a homozygous SPEF2 stop-gain variant (c.3240delT (p.Phe1080Leufs*2)). All these variants affected the long SPEF2 transcripts that are expressed in the testis and encode the IFT20 (intraflagellar transport 20) binding domain, important for sperm tail development. Notably, previous animal studies reported spontaneous mutations of SPEF2 causing sperm tail defects in bulls and pigs. Our further functional studies using immunofluorescence assays showed the absence or a remarkably reduced staining of SPEF2 and of the MMAF-associated CFAP69 protein in the spermatozoa from SPEF2-affected subjects. CONCLUSIONS: We identified SPEF2 as a novel gene for human MMAF across the populations. Functional analyses suggested that the deficiency of SPEF2 in the mutated subjects could alter the localisation of other axonemal proteins.


Assuntos
Proteínas de Ciclo Celular/genética , Homozigoto , Infertilidade Masculina/genética , Mutação , Cauda do Espermatozoide/metabolismo , China , Análise Mutacional de DNA , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Irã (Geográfico) , Masculino , Linhagem , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Sequenciamento do Exoma
15.
J Med Genet ; 57(2): 89-95, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31501240

RESUMO

BACKGROUND: Male infertility is a prevalent issue worldwide, mostly due to the impaired sperm motility. Multiple morphological abnormalities of the sperm flagella (MMAF) present aberrant spermatozoa with absent, short, coiled, bent and irregular-calibre flagella resulting in severely decreased motility. Previous studies reported several MMAF-associated genes accounting for approximately half of MMAF cases. METHODS AND RESULT: We conducted genetic analysis using whole-exome sequencing in 88 Han Chinese MMAF probands. CFAP65 homozygous mutations were identified in four unrelated consanguineous families, and CFAP65 compound heterozygous mutations were found in two unrelated cases with MMAF. All these CFAP65 mutations were null, including four frameshift mutations (c.1775delC [p.Pro592Leufs*8], c.3072_3079dup [p.Arg1027Profs*41], c.1946delC [p.Pro649Argfs*5] and c.1580delT [p.Leu527Argfs*31]) and three stop-gain mutations (c.4855C>T [p.Arg1619*], c.5270T>A [p.Leu1757*] and c.5341G>T [p.Glu1781*]). Additionally, two homozygous CFAP65 variants likely affecting splicing were identified in two MMAF-affected men of Tunisian and Iranian ancestries, respectively. These biallelic variants of CFAP65 were verified by Sanger sequencing and were absent or very rare in large data sets aggregating sequence information from various human populations. CFAP65, encoding the cilia and flagella associated protein 65, is highly and preferentially expressed in the testis. Here we also generated a frameshift mutation in mouse orthologue Cfap65 using CRISPR-Cas9 technology. Remarkably, the phenotypes of Cfap65-mutated male mice were consistent with human MMAF. CONCLUSIONS: Our experimental observations performed on both human subjects and on Cfap65-mutated mice demonstrate that the presence of biallelic mutations in CFAP65 causes the MMAF phenotype and impairs sperm motility.


Assuntos
Anormalidades Múltiplas/genética , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Cauda do Espermatozoide/metabolismo , Anormalidades Múltiplas/patologia , Adulto , Alelos , Animais , Flagelos/genética , Flagelos/patologia , Humanos , Infertilidade Masculina/patologia , Irã (Geográfico) , Masculino , Camundongos , Mutação/genética , Fenótipo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/patologia , Testículo/patologia , Sequenciamento do Exoma
16.
J Assist Reprod Genet ; 37(6): 1431-1439, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323121

RESUMO

BACKGROUND: Asthenoteratospermia with multiple morphological abnormalities in the sperm flagella (MMAF) is a significant cause of male infertility. WDR19 is a core component in the IFT-A complex and has a critical role in intraflagellar transport. However, the role of WDR19 mutations in male infertility has yet to be examined. METHODS AND RESULTS: We performed whole exome sequencing (WES) for 65 asthenoteratospermia individuals and identified a proband who carried a homozygous WDR19 (c.A3811G, p.K1271E) mutation from a consanguineous family. Systematic examinations, including CT scanning and retinal imaging, excluded previous ciliopathic syndromes in the proband. Moreover, semen analysis of this patient showed that the progressive rate decreased to zero, and the sperm flagella showed multiple morphological abnormalities. Scanning and transmission electron microscopy assays indicated that the ultrastructure of sperm flagella in the patient was completely destroyed, while immunofluorescence revealed that WDR19 was absent from the sperm neck and flagella. Moreover, IFT140 and IFT88, predicted to interact with WDR19 directly, were mis-allocated in the WDR19-mutated sperm. Notably, the MMAF subject harboring WDR19 variant and his partner successfully achieved clinical pregnancy through intracytoplasmic sperm injection (ICSI). CONCLUSIONS: We identified WDR19 as a novel pathogenic gene for male infertility caused by asthenoteratospermia in the absence of other ciliopathic phenotypes, and that patients carrying WDR19 variant can have favorable pregnancy outcomes following ICSI.


Assuntos
Astenozoospermia/genética , Proteínas do Citoesqueleto/genética , Infertilidade Masculina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cauda do Espermatozoide/metabolismo , Adulto , Astenozoospermia/patologia , Exoma/genética , Feminino , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Microtúbulos/genética , Microtúbulos/patologia , Mutação/genética , Gravidez , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide/patologia , Espermatozoides/patologia , Sequenciamento do Exoma
17.
J Assist Reprod Genet ; 37(6): 1421-1429, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32314195

RESUMO

PURPOSE: Cystic fibrosis transmembrane conductance regulator (CFTR) and adhesion G protein-coupled receptor G2 (ADGRG2) have been identified as the main pathogenic genes in congenital bilateral absence of the vas deferens (CBAVD), which is an important cause of obstructive azoospermia. This study aimed to identify the disease-causing gene in two brothers with CBAVD from a Chinese consanguineous family and reveal the intracytoplasmic sperm injection (ICSI) outcomes in these patients. METHODS: Whole-exome sequencing and Sanger sequencing were used to identify the candidate pathogenic genes. Real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to assess the expression of the mutant gene. Moreover, the ICSI results from both patients were retrospectively reviewed. RESULTS: A novel hemizygous loss-of-function mutation (c.G118T: p.Glu40*) in ADGRG2 was identified in both patients with CBAVD. This mutation is absent from the human genome databases and causes an early translational termination in the third exon of ADGRG2. Expression analyses showed that both the ADGRG2 mRNA and the corresponding protein were undetectable in the proximal epididymal tissue of ADGRG2-mutated patients. ADGRG2 expression was restricted to the apical membranes of non-ciliated epithelia in human efferent ducts, which was consistent with a previous report in mice. Both ADGRG2-mutated patients had normal spermatogenesis and had successful clinical outcomes following ICSI. CONCLUSIONS: Our study verifies the pathogenic role of ADGRG2 in X-linked CBAVD and broadens the spectrum of ADGRG2 mutations. In addition, we found positive ICSI outcomes in the two ADGRG2-mutated CBAVD patients.


Assuntos
Azoospermia/genética , Infertilidade Masculina/genética , Doenças Urogenitais Masculinas/genética , Receptores Acoplados a Proteínas G/genética , Ducto Deferente/anormalidades , Adulto , Animais , Azoospermia/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemizigoto , Humanos , Infertilidade Masculina/patologia , Mutação com Perda de Função/genética , Masculino , Doenças Urogenitais Masculinas/patologia , Camundongos , Injeções de Esperma Intracitoplásmicas/normas , Espermatogênese/genética , Ducto Deferente/patologia , Sequenciamento do Exoma
18.
J Genet Genomics ; 51(10): 1007-1019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38909778

RESUMO

Oligoasthenoteratozoospermia is an important factor affecting male fertility and has been found to be associated with genetic factors. However, there are still a proportion of oligoasthenoteratozoospermia cases that cannot be explained by known pathogenic genetic variants. Here, we perform genetic analyses and identify bi-allelic loss-of-function variants of MFSD6L from an oligoasthenoteratozoospermia-affected family. Mfsd6l knock-out male mice also present male subfertility with reduced sperm concentration, motility, and deformed acrosomes. Further mechanistic analyses reveal that MFSD6L, as an acrosome membrane protein, plays an important role in the formation of acrosome by interacting with the inner acrosomal membrane protein SPACA1. Moreover, poor embryonic development is consistently observed after intracytoplasmic sperm injection treatment using spermatozoa from the MFSD6L-deficient man and male mice. Collectively, our findings reveal that MFSD6L is required for the anchoring of sperm acrosome and head shaping. The deficiency of MFSD6L affects male fertility and causes oligoasthenoteratozoospermia in humans and mice.


Assuntos
Acrossomo , Proteínas de Membrana , Camundongos Knockout , Masculino , Animais , Camundongos , Acrossomo/patologia , Acrossomo/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Astenozoospermia/genética , Astenozoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Espermatozoides/metabolismo , Espermatozoides/patologia , Motilidade dos Espermatozoides/genética , Oligospermia/genética , Oligospermia/patologia
19.
Andrology ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385883

RESUMO

OBJECTIVES: In male mice, adgb-knockout has been reported to cause male infertility with spermatogenesis defects involving flagella and acrosome. However, this remains unclear for humans. MATERIALS AND METHODS: Sequencing studies were conducted in a research hospital on samples from three unrelated infertile men with severe asthenoteratozoospermia from Han Chinese families. Data were collected through rigorous in silico analysis. Sanger sequencing were performed to identify pathogenic mutations. Sperm cells from patients were characterized using electron microscopy and used to verify the pathogenicity of the genetic factors through functional assays. Intracytoplasmic sperm injections (ICSI) assays were performed in ADGB-affected males. MAIN RESULTS: Herein, in a cohort of 105 Han Chinese men with idiopathic asthenoteratozoospermia, we reported the identification of bi-allelic deleterious variants of ADGB in three infertile men from unrelated families using whole-exome sequencing. We found one homozygous frameshift ADGB variant (NM_024694.4: c.2801_2802del:p.K934Rfs*33), one homozygous missense ADGB variant (NM_024694.4: c.C3167T:p.T1056I), and one compound heterozygous ADGB variant (NM_024694.4: c.C3167T:p.T1056I; c.C3197T:p.A1066V). These variants were rare in general population and were predicted to be damaging by multiple bioinformatics tools. Further, the spermatozoa from patients harboring ADGB variants showed multiple acrosome and flagellum malformations under light and electron microscopy. Functional assays revealed the structural defects associated with dysregulation of ADGB and multiple spermatogenesis proteins. Notably, the fertilization success via ICSI treatment in all three patients, as well as the normal expression of PLCζ but CaM deficiency in the spermatozoa, suggesting that ICSI other than in vitro fertilization (IVF) is an optimal treatment for ADGB-deficient patients. DISCUSSION AND CONCLUSION: Our findings provide new information for the molecular diagnosis of asthenoteratozoospermia and valuable reference for personalized genetic counselling and clinical treatment for these patients. The underlying risk of IVF failure behind sperm defects was highlighted.

20.
Cells ; 10(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202084

RESUMO

Male infertility is a multifactorial disease with a strong genetic background. Abnormal sperm morphologies have been found to be closely related to male infertility. Here, we conducted whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Two novel hemizygous mutations were identified in USP26, an X-linked gene preferentially expressed in the testis and encoding a deubiquitinating enzyme. These USP26 variants are extremely rare in human population genome databases and have been predicted to be deleterious by multiple bioinformatics tools. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring hemizygous USP26 variants showed a highly aberrant morphology and ultrastructure of the sperm heads and flagella. Real-time quantitative PCR and immunoblotting assays revealed obviously reduced levels of USP26 mRNA and protein in the spermatozoa from men harboring hemizygous deleterious variants of USP26. Furthermore, intracytoplasmic sperm injections performed on infertile men harboring hemizygous USP26 variants achieved satisfactory outcomes. Overall, our study demonstrates that USP26 is essential for normal sperm morphogenesis, and hemizygous USP26 mutations can induce X-linked asthenoteratozoospermia. These findings will provide effective guidance for the genetic and reproductive counseling of infertile men with asthenoteratozoospermia.


Assuntos
Astenozoospermia/genética , Cisteína Endopeptidases/genética , Mutação/genética , Povo Asiático/genética , Sequência de Bases , Cisteína Endopeptidases/metabolismo , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Injeções de Esperma Intracitoplásmicas , Espermatozoides/metabolismo , Espermatozoides/patologia , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA