Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(6): 1088-1104.e6, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32304633

RESUMO

During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , RNA Citoplasmático Pequeno/genética , Timócitos/citologia , Timócitos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Análise de Célula Única , Timócitos/imunologia , Transcriptoma
2.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390046

RESUMO

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Assuntos
Encéfalo , Neurociências , Animais , Humanos , Camundongos , Ecossistema , Neurônios
3.
Mol Psychiatry ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879719

RESUMO

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

4.
Nature ; 574(7778): 365-371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597962

RESUMO

Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.


Assuntos
Feto/citologia , Hematopoese , Fígado/citologia , Fígado/embriologia , Células Sanguíneas/citologia , Microambiente Celular , Feminino , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Tecido Linfoide/citologia , Análise de Célula Única , Células-Tronco/metabolismo
5.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318260

RESUMO

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Assuntos
Encéfalo , Bases de Dados Genéticas , Epigenômica , Multiômica , Transcriptoma , Animais , Camundongos , Genômica , Mamíferos , Primatas , Encéfalo/citologia , Encéfalo/metabolismo
6.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200899

RESUMO

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Assuntos
Biologia Computacional , Células Vegetais , Animais , Humanos , Camundongos , Plantas/genética
7.
Nat Methods ; 17(8): 793-798, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719530

RESUMO

Massively parallel single-cell and single-nucleus RNA sequencing has opened the way to systematic tissue atlases in health and disease, but as the scale of data generation is growing, so is the need for computational pipelines for scaled analysis. Here we developed Cumulus-a cloud-based framework for analyzing large-scale single-cell and single-nucleus RNA sequencing datasets. Cumulus combines the power of cloud computing with improvements in algorithm and implementation to achieve high scalability, low cost, user-friendliness and integrated support for a comprehensive set of features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of bone marrow cells and show that it substantially improves efficiency over conventional frameworks, while maintaining or improving the quality of results, enabling large-scale studies.


Assuntos
Computação em Nuvem/economia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biologia Computacional/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Análise de Sequência de RNA/economia
8.
Nature ; 549(7672): 351-356, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902842

RESUMO

Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces.


Assuntos
Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Inflamação/imunologia , Inflamação/patologia , Pulmão/patologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Imunidade Inata/imunologia , Interleucina-17/imunologia , Interleucina-33/imunologia , Ligantes , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Neurotransmissores/biossíntese , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Transdução de Sinais , Transcrição Gênica
10.
PLoS Comput Biol ; 17(9): e1008913, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34516542

RESUMO

Many methods have been developed for statistical analysis of microbial community profiles, but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, non-independence, and compositionality) and of the associated underlying biology, it is difficult to compare or evaluate such methods within a single systematic framework. To address this challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a statistical model of microbial ecological population structure, which can be used to parameterize real-world microbial community profiles and to simulate new, realistic profiles of known structure for methods evaluation. Specifically, SparseDOSSA's model captures marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional model components for absolute cell counts and the sequence read generation process, microbe-microbe, and microbe-environment interactions. Together, these allow fully known covariance structure between synthetic features (i.e. "taxa") or between features and "phenotypes" to be simulated for method benchmarking. Here, we demonstrate SparseDOSSA's performance for 1) accurately modeling human-associated microbial population profiles; 2) generating synthetic communities with controlled population and ecological structures; 3) spiking-in true positive synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end mouse microbiome feeding experiment. Together, these represent the most common analysis types in assessment of real microbial community environmental and epidemiological statistics, thus demonstrating SparseDOSSA's utility as a general-purpose aid for modeling communities and evaluating quantitative methods. An open-source implementation is available at http://huttenhower.sph.harvard.edu/sparsedossa2.


Assuntos
Microbiota , Modelos Estatísticos , Algoritmos , Benchmarking , Biologia Computacional/métodos , Simulação por Computador
11.
PLoS Comput Biol ; 17(11): e1009442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784344

RESUMO

It is challenging to associate features such as human health outcomes, diet, environmental conditions, or other metadata to microbial community measurements, due in part to their quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements. Here we introduce an optimized combination of novel and established methodology to assess multivariable association of microbial community features with complex metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses generalized linear and mixed models to accommodate a wide variety of modern epidemiological studies, including cross-sectional and longitudinal designs, as well as a variety of data types (e.g., counts and relative abundances) with or without covariates and repeated measurements. To construct this method, we conducted a large-scale evaluation of a broad range of scenarios under which straightforward identification of meta-omics associations can be challenging. These simulation studies reveal that MaAsLin 2's linear model preserves statistical power in the presence of repeated measures and multiple covariates, while accounting for the nuances of meta-omics features and controlling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome (HMP2) project which, in addition to reproducing established results, revealed a unique, integrated landscape of inflammatory bowel diseases (IBD) across multiple time points and omics profiles.


Assuntos
Biologia Computacional , Microbioma Gastrointestinal , Análise Multivariada , Simulação por Computador , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
12.
Mol Syst Biol ; 9: 666, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23670539

RESUMO

Complex microbial communities are an integral part of the Earth's ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta'omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta'omics approaches that are already available, those that are under active development, their success in biological discovery, and several outstanding challenges.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Metagenoma , Metagenômica/métodos , Consórcios Microbianos/genética , Software , Algoritmos , Bactérias/classificação , Simulação por Computador , Perfilação da Expressão Gênica , Humanos , Modelos Genéticos , Filogenia
14.
Cell Rep Methods ; 3(5): 100467, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323575

RESUMO

Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Neoplasias/genética , Análise de Sequência de RNA , Transcriptoma/genética
15.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945543

RESUMO

A large number of genomic and imaging datasets are being produced by consortia that seek to characterize healthy and disease tissues at single-cell resolution. While much effort has been devoted to capturing information related to biospecimen information and experimental procedures, the metadata standards that describe data matrices and the analysis workflows that produced them are relatively lacking. Detailed metadata schema related to data analysis are needed to facilitate sharing and interoperability across groups and to promote data provenance for reproducibility. To address this need, we developed the Matrix and Analysis Metadata Standards (MAMS) to serve as a resource for data coordinating centers and tool developers. We first curated several simple and complex "use cases" to characterize the types of feature-observation matrices (FOMs), annotations, and analysis metadata produced in different workflows. Based on these use cases, metadata fields were defined to describe the data contained within each matrix including those related to processing, modality, and subsets. Suggested terms were created for the majority of fields to aid in harmonization of metadata terms across groups. Additional provenance metadata fields were also defined to describe the software and workflows that produced each FOM. Finally, we developed a simple list-like schema that can be used to store MAMS information and implemented in multiple formats. Overall, MAMS can be used as a guide to harmonize analysis-related metadata which will ultimately facilitate integration of datasets across tools and consortia. MAMS specifications, use cases, and examples can be found at https://github.com/single-cell-mams/mams/.

16.
Nat Commun ; 14(1): 4566, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516747

RESUMO

Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.


Assuntos
Perfilação da Expressão Gênica , Disseminação de Informação , Animais , Camundongos , Humanos , Análise de Célula Única , Transcriptoma
17.
Nat Med ; 26(5): 792-802, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405060

RESUMO

Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, thus paving the way for charting tumor atlases.


Assuntos
Algoritmos , Núcleo Celular/genética , Genômica/métodos , Neoplasias/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Adulto , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Criança , Biologia Computacional/métodos , Feminino , Congelamento , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência de RNA/métodos , Células Tumorais Cultivadas , Sequenciamento do Exoma/métodos
19.
Dev Cell ; 49(1): 10-29, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30930166

RESUMO

Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan.


Assuntos
Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes/genética , Pediatria/tendências , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Distribuição Tecidual/genética
20.
Cancer Invest ; 26(10): 990-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19093257

RESUMO

Utilizing microarray gene expression data in cancer research possesses the ability to identify deregulated cellular pathways involved in malignant development. This study investigated the relationships of three gene families, HOX, ErbB and IGFBP, with regard to the development of ovarian cancer. These families were of interest because of similar chromosomal locations and their deregulated expression in ovarian cancer. Higher level statistics were used to differentially analyze microarray data in 65 ovarian samples to assess correlation and relationships among the gene families of interest. Fifteen genes in the three families were found to be significantly deregulated. Thirty-eight significant correlations were found within and between the genes of interest. Our data indicates that the significantly modeled relationships between HOX, ErbB and IGFBP gene pairs could provide insight into the underlying biological mechanisms in ovarian cancer.


Assuntos
Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Neoplasias Ovarianas/genética , Feminino , Humanos , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA