Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
PLoS Genet ; 19(2): e1010596, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821633

RESUMO

Genetic studies of disease progression can be used to identify factors that may influence survival or prognosis, which may differ from factors that influence on disease susceptibility. Studies of disease progression feed directly into therapeutics for disease, whereas studies of incidence inform prevention strategies. However, studies of disease progression are known to be affected by collider (also known as "index event") bias since the disease progression phenotype can only be observed for individuals who have the disease. This applies equally to observational and genetic studies, including genome-wide association studies and Mendelian randomisation (MR) analyses. In this paper, our aim is to review several statistical methods that can be used to detect and adjust for index event bias in studies of disease progression, and how they apply to genetic and MR studies using both individual- and summary-level data. Methods to detect the presence of index event bias include the use of negative controls, a comparison of associations between risk factors for incidence in individuals with and without the disease, and an inspection of Miami plots. Methods to adjust for the bias include inverse probability weighting (with individual-level data), or Slope-Hunter and Dudbridge et al.'s index event bias adjustment (when only summary-level data are available). We also outline two approaches for sensitivity analysis. We then illustrate how three methods to minimise bias can be used in practice with two applied examples. Our first example investigates the effects of blood lipid traits on mortality from coronary heart disease, while our second example investigates genetic associations with breast cancer mortality.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Viés , Fatores de Risco , Fenótipo , Análise da Randomização Mendeliana/métodos , Progressão da Doença
2.
Genet Epidemiol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080969

RESUMO

Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.

3.
PLoS Genet ; 18(7): e1010290, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849575

RESUMO

Mendelian Randomisation (MR) is a powerful tool in epidemiology that can be used to estimate the causal effect of an exposure on an outcome in the presence of unobserved confounding, by utilising genetic variants as instrumental variables (IVs) for the exposure. The effect estimates obtained from MR studies are often interpreted as the lifetime effect of the exposure in question. However, the causal effects of some exposures are thought to vary throughout an individual's lifetime with periods during which an exposure has a greater effect on a particular outcome. Multivariable MR (MVMR) is an extension of MR that allows for multiple, potentially highly related, exposures to be included in an MR estimation. MVMR estimates the direct effect of each exposure on the outcome conditional on all the other exposures included in the estimation. We explore the use of MVMR to estimate the direct effect of a single exposure at different time points in an individual's lifetime on an outcome. We use simulations to illustrate the interpretation of the results from such analyses and the key assumptions required. We show that causal effects at different time periods can be estimated through MVMR when the association between the genetic variants used as instruments and the exposure measured at those time periods varies. However, this estimation will not necessarily identify exact time periods over which an exposure has the most effect on the outcome. Prior knowledge regarding the biological basis of exposure trajectories can help interpretation. We illustrate the method through estimation of the causal effects of childhood and adult BMI on C-Reactive protein and smoking behaviour.


Assuntos
Variação Genética , Análise da Randomização Mendeliana , Causalidade , Análise da Randomização Mendeliana/métodos
4.
Stroke ; 55(8): 2045-2054, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39038097

RESUMO

BACKGROUND: Individuals who have experienced a stroke, or transient ischemic attack, face a heightened risk of future cardiovascular events. Identification of genetic and molecular risk factors for subsequent cardiovascular outcomes may identify effective therapeutic targets to improve prognosis after an incident stroke. METHODS: We performed genome-wide association studies for subsequent major adverse cardiovascular events (MACE; ncases=51 929; ncontrols=39 980) and subsequent arterial ischemic stroke (AIS; ncases=45 120; ncontrols=46 789) after the first incident stroke within the Million Veteran Program and UK Biobank. We then used genetic variants associated with proteins (protein quantitative trait loci) to determine the effect of 1463 plasma protein abundances on subsequent MACE using Mendelian randomization. RESULTS: Two variants were significantly associated with subsequent cardiovascular events: rs76472767 near gene RNF220 (odds ratio, 0.75 [95% CI, 0.64-0.85]; P=3.69×10-8) with subsequent AIS and rs13294166 near gene LINC01492 (odds ratio, 1.52 [95% CI, 1.37-1.67]; P=3.77×10-8) with subsequent MACE. Using Mendelian randomization, we identified 2 proteins with an effect on subsequent MACE after a stroke: CCL27 ([C-C motif chemokine 27], effect odds ratio, 0.77 [95% CI, 0.66-0.88]; adjusted P=0.05) and TNFRSF14 ([tumor necrosis factor receptor superfamily member 14], effect odds ratio, 1.42 [95% CI, 1.24-1.60]; adjusted P=0.006). These proteins are not associated with incident AIS and are implicated to have a role in inflammation. CONCLUSIONS: We found evidence that 2 proteins with little effect on incident stroke appear to influence subsequent MACE after incident AIS. These associations suggest that inflammation is a contributing factor to subsequent MACE outcomes after incident AIS and highlights potential novel targets.


Assuntos
Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Acidente Vascular Cerebral , Veteranos , Humanos , Masculino , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/epidemiologia , Feminino , Reino Unido/epidemiologia , Pessoa de Meia-Idade , Idoso , Progressão da Doença , Polimorfismo de Nucleotídeo Único/genética , AVC Isquêmico/genética , AVC Isquêmico/epidemiologia , Fatores de Risco , Locos de Características Quantitativas , Biobanco do Reino Unido
5.
Am J Epidemiol ; 193(1): 159-169, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37579319

RESUMO

Cognitive functioning in older age profoundly impacts quality of life and health. While most research on cognition in older age has focused on mean levels, intraindividual variability (IIV) around this may have risk factors and outcomes independent of the mean value. Investigating risk factors associated with IIV has typically involved deriving a summary statistic for each person from residual error around a fitted mean. However, this ignores uncertainty in the estimates, prohibits exploring associations with time-varying factors, and is biased by floor/ceiling effects. To address this, we propose a mixed-effects location scale beta-binomial model for estimating average probability and IIV in a word recall test in the English Longitudinal Study of Ageing. After adjusting for mean performance, an analysis of 9,873 individuals across 7 (mean = 3.4) waves (2002-2015) found IIV to be greater at older ages, with lower education, in females, with more difficulties in activities of daily living, in later birth cohorts, and when interviewers recorded issues potentially affecting test performance. Our study introduces a novel method for identifying groups with greater IIV in bounded discrete outcomes. Our findings have implications for daily functioning and care, and further work is needed to identify the impact for future health outcomes.


Assuntos
Atividades Cotidianas , Qualidade de Vida , Idoso , Feminino , Humanos , Envelhecimento/psicologia , Cognição , Estudos Longitudinais , Modelos Estatísticos , Fatores de Risco , Masculino
6.
Am J Epidemiol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191658

RESUMO

Auxiliary variables are used in multiple imputation (MI) to reduce bias and increase efficiency. These variables may often themselves be incomplete. We explored how missing data in auxiliary variables influenced estimates obtained from MI. We implemented a simulation study with three different missing data mechanisms for the outcome. We then examined the impact of increasing proportions of missing data and different missingness mechanisms for the auxiliary variable on bias of an unadjusted linear regression coefficient and the fraction of missing information. We illustrate our findings with an applied example in the Avon Longitudinal Study of Parents and Children. We found that where complete records analyses were biased, increasing proportions of missing data in auxiliary variables, under any missing data mechanism, reduced the ability of MI including the auxiliary variable to mitigate this bias. Where there was no bias in the complete records analysis, inclusion of a missing not at random auxiliary variable in MI introduced bias of potentially important magnitude (up to 17% of the effect size in our simulation). Careful consideration of the quantity and nature of missing data in auxiliary variables needs to be made when selecting them for use in MI models.

7.
Am J Epidemiol ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218436

RESUMO

A child's relative age within their school year ('relative age') is associated with educational attainment and mental health. However, hypothesis driven studies often re-examine the same outcomes and exposure, potentially leading to confirmation and reporting biases, and missing unknown effects. Hypothesis-free outcome-wide analyses can potentially overcome these limitations. We conducted a hypothesis-free investigation of the effects of relative age within school year. We used an instrumental variable (IV)-pheWAS in the UK Biobank (participants aged 40-69 years at baseline), using the PHESANT software package. We created two IVs for relative age: being born in September vs. August (n=64 075) and week of birth (n=383 309). Outcomes passing the Bonferroni-corrected P value threshold for either instrument were plotted to identify a discontinuity at the school year transition. 13 traits associated with at least one of the instruments showed a discontinuity. Previously identified effects included those with a younger relative age being less likely to have educational qualifications and more likely to have started smoking at a younger age. We detected a few associations not explored by previous studies. For example, those with younger relative age had better lung function as adults. Hypothesis-free approaches could help address confirmation and reporting biases in epidemiology.

8.
BMC Med ; 22(1): 391, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272119

RESUMO

BACKGROUND: Adiposity shows opposing associations with mortality within COVID-19 versus non-COVID-19 respiratory conditions. We assessed the likely causality of adiposity for mortality among intensive care patients with COVID-19 versus non-COVID-19 by examining the consistency of associations across temporal and geographical contexts where biases vary. METHODS: We used data from 297 intensive care units (ICUs) in England, Wales, and Northern Ireland (Intensive Care National Audit and Research Centre Case Mix Programme). We examined associations of body mass index (BMI) with 30-day mortality, overall and by date and region of ICU admission, among patients admitted with COVID-19 (N = 34,701; February 2020-August 2021) and non-COVID-19 respiratory conditions (N = 25,205; February 2018-August 2019). RESULTS: Compared with non-COVID-19 patients, COVID-19 patients were younger, less often of a white ethnic group, and more often with extreme obesity. COVID-19 patients had fewer comorbidities but higher mortality. Socio-demographic and comorbidity factors and their associations with BMI and mortality varied more by date than region of ICU admission. Among COVID-19 patients, higher BMI was associated with excess mortality (hazard ratio (HR) per standard deviation (SD) = 1.05; 95% CI = 1.03-1.07). This was evident only for extreme obesity and only during February-April 2020 (HR = 1.52, 95% CI = 1.30-1.77 vs. recommended weight); this weakened thereafter. Among non-COVID-19 patients, higher BMI was associated with lower mortality (HR per SD = 0.83; 95% CI = 0.81-0.86), seen across all overweight/obesity groups and across dates and regions, albeit with a magnitude that varied over time. CONCLUSIONS: Obesity is associated with higher mortality among COVID-19 patients, but lower mortality among non-COVID-19 respiratory patients. These associations appear vulnerable to confounding/selection bias in both patient groups, questioning the existence or stability of causal effects.


Assuntos
Adiposidade , Índice de Massa Corporal , COVID-19 , Unidades de Terapia Intensiva , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Reino Unido/epidemiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Obesidade/mortalidade , Obesidade/complicações , Obesidade/epidemiologia , SARS-CoV-2 , Adulto , Comorbidade , Cuidados Críticos , Idoso de 80 Anos ou mais , Mortalidade Hospitalar
9.
Psychol Med ; : 1-8, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818779

RESUMO

BACKGROUND: Depression is a common mental health disorder that often starts during adolescence, with potentially important future consequences including 'Not in Education, Employment or Training' (NEET) status. METHODS: We took a structured life course modeling approach to examine how depressive symptoms during adolescence might be associated with later NEET status, using a high-quality longitudinal data resource. We considered four plausible life course models: (1) an early adolescent sensitive period model where depressive symptoms in early adolescence are more associated with later NEET status relative to exposure at other stages; (2) a mid adolescent sensitive period model where depressive symptoms during the transition from compulsory education to adult life might be more deleterious regarding NEET status; (3) a late adolescent sensitive period model, meaning that depressive symptoms around the time when most adults have completed their education and started their careers are the most strongly associated with NEET status; and (4) an accumulation of risk model which highlights the importance of chronicity of symptoms. RESULTS: Our analysis sample included participants with full information on NEET status (N = 3951), and the results supported the accumulation of risk model, showing that the odds of NEET increase by 1.015 (95% CI 1.012-1.019) for an increase of 1 unit in depression at any age between 11 and 24 years. CONCLUSIONS: Given the adverse implications of NEET status, our results emphasize the importance of supporting mental health during adolescence and early adulthood, as well as considering specific needs of young people with re-occurring depressed mood.

10.
Stat Med ; 43(6): 1238-1255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38258282

RESUMO

In clinical studies, multi-state model (MSM) analysis is often used to describe the sequence of events that patients experience, enabling better understanding of disease progression. A complicating factor in many MSM studies is that the exact event times may not be known. Motivated by a real dataset of patients who received stem cell transplants, we considered the setting in which some event times were exactly observed and some were missing. In our setting, there was little information about the time intervals in which the missing event times occurred and missingness depended on the event type, given the analysis model covariates. These additional challenges limited the usefulness of some missing data methods (maximum likelihood, complete case analysis, and inverse probability weighting). We show that multiple imputation (MI) of event times can perform well in this setting. MI is a flexible method that can be used with any complete data analysis model. Through an extensive simulation study, we show that MI by predictive mean matching (PMM), in which sampling is from a set of observed times without reliance on a specific parametric distribution, has little bias when event times are missing at random, conditional on the observed data. Applying PMM separately for each sub-group of patients with a different pathway through the MSM tends to further reduce bias and improve precision. We recommend MI using PMM methods when performing MSM analysis with Markov models and partially observed event times.


Assuntos
Projetos de Pesquisa , Humanos , Interpretação Estatística de Dados , Simulação por Computador , Probabilidade , Viés
11.
Stat Med ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039030

RESUMO

Selection bias is a common concern in epidemiologic studies. In the literature, selection bias is often viewed as a missing data problem. Popular approaches to adjust for bias due to missing data, such as inverse probability weighting, rely on the assumption that data are missing at random and can yield biased results if this assumption is violated. In observational studies with outcome data missing not at random, Heckman's sample selection model can be used to adjust for bias due to missing data. In this paper, we review Heckman's method and a similar approach proposed by Tchetgen Tchetgen and Wirth (2017). We then discuss how to apply these methods to Mendelian randomization analyses using individual-level data, with missing data for either the exposure or outcome or both. We explore whether genetic variants associated with participation can be used as instruments for selection. We then describe how to obtain missingness-adjusted Wald ratio, two-stage least squares and inverse variance weighted estimates. The two methods are evaluated and compared in simulations, with results suggesting that they can both mitigate selection bias but may yield parameter estimates with large standard errors in some settings. In an illustrative real-data application, we investigate the effects of body mass index on smoking using data from the Avon Longitudinal Study of Parents and Children.

12.
Eur J Epidemiol ; 39(8): 843-855, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38421485

RESUMO

Mendelian randomization may give biased causal estimates if the instrument affects the outcome not solely via the exposure of interest (violating the exclusion restriction assumption). We demonstrate use of a global randomization test as a falsification test for the exclusion restriction assumption. Using simulations, we explored the statistical power of the randomization test to detect an association between a genetic instrument and a covariate set due to (a) selection bias or (b) horizontal pleiotropy, compared to three approaches examining associations with individual covariates: (i) Bonferroni correction for the number of covariates, (ii) correction for the effective number of independent covariates, and (iii) an r2 permutation-based approach. We conducted proof-of-principle analyses in UK Biobank, using CRP as the exposure and coronary heart disease (CHD) as the outcome. In simulations, power of the randomization test was higher than the other approaches for detecting selection bias when the correlation between the covariates was low (r2 < 0.1), and at least as powerful as the other approaches across all simulated horizontal pleiotropy scenarios. In our applied example, we found strong evidence of selection bias using all approaches (e.g., global randomization test p < 0.002). We identified 51 of the 58 CRP genetic variants as horizontally pleiotropic, and estimated effects of CRP on CHD attenuated somewhat to the null when excluding these from the genetic risk score (OR = 0.96 [95% CI: 0.92, 1.00] versus 0.97 [95% CI: 0.90, 1.05] per 1-unit higher log CRP levels). The global randomization test can be a useful addition to the MR researcher's toolkit.


Assuntos
Doença das Coronárias , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Doença das Coronárias/genética , Doença das Coronárias/diagnóstico , Viés de Seleção
13.
Eur J Epidemiol ; 39(5): 451-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38789826

RESUMO

Mendelian randomisation (MR) is an established technique in epidemiological investigation, using the principle of random allocation of genetic variants at conception to estimate the causal linear effect of an exposure on an outcome. Extensions to this technique include non-linear approaches that allow for differential effects of the exposure on the outcome depending on the level of the exposure. A widely used non-linear method is the residual approach, which estimates the causal effect within different strata of the non-genetically predicted exposure (i.e. the "residual" exposure). These "local" causal estimates are then used to make inferences about non-linear effects. Recent work has identified that this method can lead to estimates that are seriously biased, and a new method-the doubly-ranked method-has been introduced as a possibly more robust approach. In this paper, we perform negative control outcome analyses in the MR context. These are analyses with outcomes onto which the exposure should have no predicted causal effect. Using both methods we find clearly biased estimates in certain situations. We additionally examined a situation for which there are robust randomised controlled trial estimates of effects-that of low-density lipoprotein cholesterol (LDL-C) reduction onto myocardial infarction, where randomised trials have provided strong evidence of the shape of the relationship. The doubly-ranked method did not identify the same shape as the trial data, and for LDL-C and other lipids they generated some highly implausible findings. Therefore, we suggest there should be extensive simulation and empirical methodological examination of performance of both methods for NLMR under different conditions before further use of these methods. In the interim, use of NLMR methods needs justification, and a number of sanity checks (such as analysis of negative and positive control outcomes, sensitivity analyses excluding removal of strata at the extremes of the distribution, examination of biological plausibility and triangulation of results) should be performed.


Assuntos
Viés , Índice de Massa Corporal , LDL-Colesterol , Análise da Randomização Mendeliana , Vitamina D , Humanos , Análise da Randomização Mendeliana/métodos , LDL-Colesterol/sangue , Vitamina D/sangue , Causalidade , Dinâmica não Linear
14.
Eur J Epidemiol ; 39(5): 521-533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38281297

RESUMO

Identifying factors that are causes of disease progression, especially in neurodegenerative diseases, is of considerable interest. Disease progression can be described as a trajectory of outcome over time-for example, a linear trajectory having both an intercept (severity at time zero) and a slope (rate of change). A technique for identifying causal relationships between one exposure and one outcome in observational data whilst avoiding bias due to confounding is two sample Mendelian Randomisation (2SMR). We consider a multivariate approach to 2SMR using a multilevel model for disease progression to estimate the causal effect an exposure has on the intercept and slope. We carry out a simulation study comparing a naïve univariate 2SMR approach to a multivariate 2SMR approach with one exposure that effects both the intercept and slope of an outcome that changes linearly with time since diagnosis. The simulation study results, across six different scenarios, for both approaches were similar with no evidence against a non-zero bias and appropriate coverage of the 95% confidence intervals (for intercept 93.4-96.2% and the slope 94.5-96.0%). The multivariate approach gives a better joint coverage of both the intercept and slope effects. We also apply our method to two Parkinson's cohorts to examine the effect body mass index has on disease progression. There was no strong evidence that BMI affects disease progression, however the confidence intervals for both intercept and slope were wide.


Assuntos
Progressão da Doença , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Índice de Massa Corporal , Doença de Parkinson/genética , Simulação por Computador , Causalidade
15.
Eur J Epidemiol ; 39(3): 257-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183607

RESUMO

Fixed-effect meta-analysis has been used to summarize genetic effects on a phenotype across multiple Genome-Wide Association Studies (GWAS) assuming a common underlying genetic effect. Genetic effects may vary with age (or other characteristics), and not allowing for this in a GWAS might lead to bias. Meta-regression models between study heterogeneity and allows effect modification of the genetic effects to be explored. The aim of this study was to explore the use of meta-analysis and meta-regression for estimating age-varying genetic effects on phenotypes. With simulations we compared the performance of meta-regression to fixed-effect and random -effects meta-analyses in estimating (i) main genetic effects and (ii) age-varying genetic effects (SNP by age interactions) from multiple GWAS studies under a range of scenarios. We applied meta-regression on publicly available summary data to estimate the main and age-varying genetic effects of the FTO SNP rs9939609 on Body Mass Index (BMI). Fixed-effect and random-effects meta-analyses accurately estimated genetic effects when these did not change with age. Meta-regression accurately estimated both main genetic effects and age-varying genetic effects. When the number of studies or the age-diversity between studies was low, meta-regression had limited power. In the applied example, each additional minor allele (A) of rs9939609 was inversely associated with BMI at ages 0 to 3, and positively associated at ages 5.5 to 13. Our findings challenge the assumption that genetic effects are consistent across all ages and provide a method for exploring this. GWAS consortia should be encouraged to use meta-regression to explore age-varying genetic effects.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Índice de Massa Corporal , Fenótipo , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
16.
Artigo em Inglês | MEDLINE | ID: mdl-38755320

RESUMO

Emotional problems (anxiety, depression) are prevalent in children, adolescents and young adults with varying ages at onset. Studying developmental changes in emotional problems requires repeated assessments using the same or equivalent measures. The parent-rated Strengths and Difficulties Questionnaire is commonly used to assess emotional problems in childhood and adolescence, but there is limited research about whether it captures a similar construct across these developmental periods. Our study addressed this by investigating measurement invariance in the scales' emotional problems subscale (SDQ-EP) across childhood, adolescence and early adulthood. Data from two UK population cohorts were utilised: the Millennium Cohort Study (ages 3-17 years) and the Avon Longitudinal Study of Parents and Children (4-25 years). In both samples we observed weak (metric) measurement invariance by age, suggesting that the parent-rated SDQ-EP items contribute to the underlying construct of emotional problems similarly across age. This supports the validity of using the subscale to rank participants on their levels of emotional problems in childhood, adolescence and early adulthood. However strong (scalar) measurement invariance was not observed, suggesting that the same score may correspond to different levels of emotional problems across developmental periods. Comparisons of mean parent-rated SDQ-EP scores across age may therefore not be valid.

17.
Multivariate Behav Res ; 59(4): 818-840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38821136

RESUMO

Latent classes are a useful tool in developmental research, however there are challenges associated with embedding them within a counterfactual mediation model. We develop and test a new method "updated pseudo class draws (uPCD)" to examine the association between a latent class exposure and distal outcome that could easily be extended to allow the use of any counterfactual mediation method. UPCD extends an existing group of methods (based on pseudo class draws) that assume that the true values of the latent class variable are missing, and need to be multiply imputed using class membership probabilities. We simulate data based on the Avon Longitudinal Study of Parents and Children, examine performance for existing techniques to relate a latent class exposure to a distal outcome ("one-step," "bias-adjusted three-step," "modal class assignment," "non-inclusive pseudo class draws," and "inclusive pseudo class draws") and compare bias in parameter estimates and their precision to uPCD when estimating counterfactual mediation effects. We found that uPCD shows minimal bias when estimating counterfactual mediation effects across all levels of entropy. UPCD performs similarly to recommended methods (one-step and bias-adjusted three-step), but provides greater flexibility and scope for incorporating the latent grouping within any commonly-used counterfactual mediation approach.


Assuntos
Análise de Classes Latentes , Análise de Mediação , Humanos , Estudos Longitudinais , Modelos Estatísticos , Interpretação Estatística de Dados , Criança , Simulação por Computador/estatística & dados numéricos , Feminino , Masculino
18.
Genet Epidemiol ; 46(5-6): 303-316, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35583096

RESUMO

Genome-wide association studies have provided many genetic markers that can be used as instrumental variables to adjust for confounding in epidemiological studies. Recently, the principle has been applied to other forms of bias in observational studies, especially collider bias that arises when conditioning or stratifying on a variable that is associated with the outcome of interest. An important case is in studies of disease progression and survival. Here, we clarify the links between the genetic instrumental variable methods proposed for this problem and the established methods of Mendelian randomisation developed to account for confounding. We highlight the critical importance of weak instrument bias in this context and describe a corrected weighted least-squares procedure as a simple approach to reduce this bias. We illustrate the range of available methods on two data examples. The first, waist-hip ratio adjusted for body-mass index, entails statistical adjustment for a quantitative trait. The second, smoking cessation, is a stratified analysis conditional on having initiated smoking. In both cases, we find little effect of collider bias on the primary association results, but this may propagate into more substantial effects on further analyses such as polygenic risk scoring and Mendelian randomisation.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Viés , Estudo de Associação Genômica Ampla/métodos , Humanos , Análise dos Mínimos Quadrados , Análise da Randomização Mendeliana/métodos , Relação Cintura-Quadril
19.
Am J Epidemiol ; 192(5): 800-811, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721372

RESUMO

Motivated by our conduct of a literature review on social exposures and accelerated aging as measured by a growing number of epigenetic "clocks" (which estimate age via DNA methylation (DNAm) patterns), we report on 3 different approaches in the epidemiologic literature-1 incorrect and 2 correct-on the treatment of age in these and other studies using other common exposures (i.e., body mass index and alcohol consumption). Among the 50 empirical articles reviewed, the majority (n = 29; 58%) used the incorrect method of analyzing accelerated aging detrended for age as the outcome and did not control for age as a covariate. By contrast, only 42% used correct methods, which are either to analyze accelerated aging detrended for age as the outcome and control for age as a covariate (n = 16; 32%) or to analyze raw DNAm age as the outcome and control for age as a covariate (n = 5; 10%). In accord with prior demonstrations of bias introduced by use of the incorrect approach, we provide simulation analyses and additional empirical analyses to illustrate how the incorrect method can lead to bias towards the null, and we discuss implications for extant research and recommendations for best practices.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Envelhecimento/genética , Metilação de DNA , Epigenômica , Índice de Massa Corporal
20.
Am J Hum Genet ; 106(3): 315-326, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084330

RESUMO

Whether smoking-associated DNA methylation has a causal effect on lung function has not been thoroughly evaluated. We first investigated the causal effects of 474 smoking-associated CpGs on forced expiratory volume in 1 s (FEV1) in UK Biobank (n = 321,047) by using two-sample Mendelian randomization (MR) and then replicated this investigation in the SpiroMeta Consortium (n = 79,055). Second, we used two-step MR to investigate whether DNA methylation mediates the effect of smoking on FEV1. Lastly, we evaluated the presence of horizontal pleiotropy and assessed whether there is any evidence for shared causal genetic variants between lung function, DNA methylation, and gene expression by using a multiple-trait colocalization ("moloc") framework. We found evidence of a possible causal effect for DNA methylation on FEV1 at 18 CpGs (p < 1.2 × 10-4). Replication analysis supported a causal effect at three CpGs (cg21201401 [LIME1 and ZGPAT], cg19758448 [PGAP3], and cg12616487 [EML3 and AHNAK] [p < 0.0028]). DNA methylation did not clearly mediate the effect of smoking on FEV1, although DNA methylation at some sites might influence lung function via effects on smoking. By using "moloc", we found evidence of shared causal variants between lung function, gene expression, and DNA methylation. These findings highlight potential therapeutic targets for improving lung function and possibly smoking cessation, although larger, tissue-specific datasets are required to confirm these results.


Assuntos
Metilação de DNA , Pulmão/fisiologia , Análise da Randomização Mendeliana/métodos , Fumar , Ilhas de CpG , Volume Expiratório Forçado , Pleiotropia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA