Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946152

RESUMO

Skeletal muscle injury affects the quality of life in many pathologies, including volumetric muscle loss, contusion injury, and aging. We hypothesized that the nicotinamide phosphoribosyltransferase (Nampt) activator P7C3 improves muscle repair following injury. In the present study, we tested the effect of P7C3 (1-anilino-3-(3,6-dibromocarbazol-9-yl) propan-2-ol) on chemically induced muscle injury. Muscle injury was induced by injecting 50 µL 1.2% barium chloride (BaCl2) into the tibialis anterior (TA) muscle in C57Bl/6J wild-type male mice. Mice were then treated with either 10 mg/kg body weight of P7C3 or Vehicle intraperitoneally for 7 days and assessed for histological, biochemical, and molecular changes. In the present study, we show that the acute BaCl2-induced TA muscle injury was robust and the P7C3-treated mice displayed a significant increase in the total number of myonuclei and blood vessels, and decreased serum CK activity compared with vehicle-treated mice. The specificity of P7C3 was evaluated using Nampt+/- mice, which did not display any significant difference in muscle repair capacity among treated groups. RNA-sequencing analysis of the injured TA muscles displayed 368 and 212 genes to be exclusively expressed in P7C3 and Veh-treated mice, respectively. There was an increase in the expression of genes involved in cellular processes, inflammatory response, angiogenesis, and muscle development in P7C3 versus Veh-treated mice. Conversely, there is a decrease in muscle structure and function, myeloid cell differentiation, glutathione, and oxidation-reduction, drug metabolism, and circadian rhythm signaling pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction (qPCR) and reverse transcription-qPCR analyses identified increased Pax7, Myf5, MyoD, and Myogenin expression in P7C3-treated mice. Increased histone lysine (H3K) methylation and acetylation were observed in P7C3-treated mice, with significant upregulation in inflammatory markers. Moreover, P7C3 treatment significantly increased the myotube fusion index in the BaCl2-injured human skeletal muscle in vitro. P7C3 also inhibited the lipopolysaccharide-induced inflammatory response and mitochondrial membrane potential of RAW 264.7 macrophage cells. Overall, we demonstrate that P7C3 activates muscle stem cells and enhances muscle injury repair with increased angiogenesis.

2.
Mol Cell Biochem ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787834

RESUMO

The use of nanoparticles (NPs) has emerged as a potential tool for safe and effective drug delivery. In the present study, we developed small molecule P7C3-based NPs and tested its efficacy and toxicity along with the tissue specific aptamer-modified P7C3 NPs. The P7C3 NPs were prepared using poly (D, L-lactic-co-glycolic acid) carboxylic acid (PLGA-COOH) polymer, were conjugated with skeletal muscle-specific RNA aptamer (A01B P7C3 NPs) and characterized for its cytotoxicity, cellular uptake, and wound healing in vitro. The A01B P7C3 NPs demonstrated an encapsulation efficiency of 30.2 ± 2.6%, with the particle size 255.9 ± 4.3 nm, polydispersity index of 0.335 ± 0.05 and zeta potential of + 10.4 ± 1.8mV. The FTIR spectrum of P7C3 NPs displayed complete encapsulation of the drug in the NPs. The P7C3 NPs and A01B P7C3 NPs displayed sustained drug release in vitro for up to 6 days and qPCR analysis confirmed A01B aptamer binding to P7C3 NPs. The C2C12 cells viability assay displayed no cytotoxic effects of all 3 formulations at 48 and 72 h. In addition, the cellular uptake of A01B P7C3 NPs in C2C12 myoblasts demonstrated higher uptake. In vitro assay mimicking wound healing showed improved wound closure with P7C3 NPs. In addition, P7C3 NPs significantly decreased TNF-α induced NF-κB activity in the C2C12/NF-κB reporter cells after 24-hour treatment. The P7C3 NPs showed 3-4-fold higher efficacy compared to P7C3 solutions in both wound-closure and inflammation assays in C2C12 cells. Furthermore, the P7C3 NPs showed 3-4-fold higher efficacy in reducing the infarct size and protected mouse hearts from ex vivo ischemia-reperfusion injury. Overall, this study demonstrates the safe and effective delivery of P7C3 NPs.

3.
J Pharmacol Exp Ther ; 382(2): 233-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680376

RESUMO

Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD+ salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD+ ratios and provides pharmacological changes necessary for diabetic cardioprotection. Computer docking shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) allows for enhanced Nampt dimerization and association. To test the pharmacological application, we used male leptin receptor-deficient (db/db) mice and treated them with Nampt activator P7C3. The effects of 4-week P7C3 treatment on cardiac function were evaluated along with molecular signaling changes for phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS), and sirtuin 1 (SIRT1). The cardiac function evaluated by ECG and echocardiography were significantly improved after 4 weeks of P7C3 treatment. Biochemically, higher NADH/NAD+ ratios in diabetic hearts were rescued by P7C3 treatment. Moreover, activities of Nampt and SIRT1 were significantly increased in P7C3-treated diabetic hearts. P7C3 treatment significantly decreased the blood glucose in diabetic mice with 4-week treatment as noted by glucose tolerance test and fasting blood glucose measurements compared with vehicle-treated mice. P7C3 activated Nampt enzymatic activity both in vitro and in the 4-week diabetic mouse hearts, demonstrating the specificity of the small molecule. P7C3 treatment significantly enhanced the expression of cardioprotective signaling of p-AKT, p-eNOS, and Beclin 1 in diabetic hearts. Nampt activator P7C3 allows for decreased infarct size with decreased Troponin I and lactose dehydrogenase (LDH) release, which is beneficial to the heart. Overall, the present study shows that P7C3 activates Nampt and SIRT1 activity and decreases NADH/NAD+ ratio, resulting in improved biochemical signaling providing cardioprotection. SIGNIFICANCE STATEMENT: This study shows that 1-(3,6-Dibromo-carbazol-9-yl)-3-phenylamino-propan-2-ol (P7C3) is effective in treating diabetes and cardiovascular diseases. The novel small molecule is antiarrhythmic and improves the ejection fraction in diabetic hearts. The study successfully demonstrated that P7C3 decreases the infarct size in hearts during myocardial infarction and ischemia-reperfusion injury. Biochemical and cellular signaling show increased NAD+ levels, along with Nampt activity involved in upregulating protective signaling in the diabetic heart. P7C3 has high therapeutic potential for rescuing heart disease.


Assuntos
Diabetes Mellitus Experimental , Infarto do Miocárdio , Animais , Glicemia , Carbazóis , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase , Proteínas Proto-Oncogênicas c-akt , Sirtuína 1/metabolismo
4.
Mol Cell Biochem ; 477(6): 1829-1848, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334034

RESUMO

The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.


Assuntos
Doenças Musculares , NAD , Envelhecimento/metabolismo , Animais , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
5.
BMC Cardiovasc Disord ; 22(1): 221, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568817

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a syndrome with a heterogeneous cluster of causes, including non-resolving inflammation, endothelial dysfunction, and multi-organ defects. The present study's objective was to identify novel predictors of HFpEF. METHODS: The study analyzed the Multi-Ethnic Study of Atherosclerosis (MESA) to assess the association of specific markers of inflammation with new onset of HFpEF (interleukin-2 [IL-2], matrix metalloproteinase 3 [MMP3], large low-density lipoprotein cholesterol [LDL-C], and medium high-density lipoprotein cholesterol [HDL-C]). The study included men and women 45 to 84 years of age without cardiovascular disease at baseline. The primary outcome was the multivariate association of the hypothesized markers of inflammation with new-onset of HFpEF versus participants without new-onset heart failure. Participants with missing data were excluded. RESULTS: The present analysis included 6814 participants, 53% female, with a mean age of 62 years. Among the entire cohort, HFpEF was diagnosed in 151 (2.2%) participants and heart failure with reduced ejection fraction (HFrEF) was diagnosed in 146 (2.1%) participants. Participants were followed for the outcome of heart failure for a median 13.9 years. Baseline IL-2 was available for 2861 participants. The multivariate analysis included 2792 participants. Of these, 2668 did not develop heart failure, 62 developed HFpEF, 47 developed HFrEF, and 15 developed unclassified heart failure. In the multivariate regression model, IL-2 was associated with new-onset HFpEF (OR, 1.00058; 95% confidence interval, 1.00014 to 1.00102, p = 0.009) but not new-onset HFrEF. In multivariate analysis, MMP3, large LDL-C, and medium HDL-C were not associated with HFpEF or HFrEF. CONCLUSION: These findings portend IL-2 as an important component of suboptimal inflammation in the pathogenesis of HFpEF.


Assuntos
Insuficiência Cardíaca , Biomarcadores , LDL-Colesterol , Estudos de Coortes , Feminino , Humanos , Inflamação/diagnóstico , Interleucina-2 , Masculino , Metaloproteinase 3 da Matriz , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Volume Sistólico
6.
Can J Physiol Pharmacol ; 99(11): 1234-1239, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33939925

RESUMO

Cardiovascular diseases including cardiac arrhythmias lead to fatal events in patients with coronary artery disease; however, clinical associations from echocardiography, electrocardiography (ECG), and biomarkers remain unknown. We sought to identify the factors that may be related to elevated QRS intervals in patients with risk for coronary artery disease. In this study, we performed analysis of clinical data from 503 patients divided into two groups, i.e., patients with either <50% coronary artery stenosis or >50% coronary artery stenosis. We further examined patients with elevated ECG parameters such as QRS > 100 ms and QTc > 440 ms. Patients with >50% coronary artery stenosis exhibited significant increases in age, triglycerides, and troponin levels. Further, ECG parameters demonstrated increased QRS and QTc durations, while echocardiographic parameters highlighted a decrease in ejection fraction (EF) and fractional shortening (FS). Patients with QTc > 440 ms exhibited increased brain natriuretic peptide and creatinine levels with a decrease in estimated glomerular filtration rate clearance rates. Patients with QRS > 100 ms had greater left ventricular (LV) mass and LV internal diameter in systole and diastole. Multimodal logistic regression showed significant relation between QTc, age, and creatinine. These findings suggest that patients with significant coronary stenosis may have lower EF and FS with prolonged QRS intervals, demonstrating greater risk for arrhythmic events.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Estenose Coronária/fisiopatologia , Eletrocardiografia , Função Ventricular , Fatores Etários , Idoso , Biomarcadores/sangue , Doença da Artéria Coronariana/diagnóstico , Estenose Coronária/diagnóstico , Creatinina/sangue , Ecocardiografia , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Estudos Retrospectivos , Risco , Volume Sistólico
7.
J Mol Cell Cardiol ; 137: 93-106, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639389

RESUMO

Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvß subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvß subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvß2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvß2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvß2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvß2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvß2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvß2-/-, hearts. Taken together, these results suggest that Kvß2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.


Assuntos
Ativação do Canal Iônico , Miocárdio/metabolismo , Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Potenciais de Ação , Animais , Testes de Função Cardíaca , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Nucleotídeos/metabolismo , Oxirredução , Piridinas/metabolismo , Canais de Potássio Shal/metabolismo
8.
Can J Physiol Pharmacol ; 97(7): 675-684, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31100204

RESUMO

Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present study, we evaluated the feasibility of the nanodelivery of FP with poly(dl-lactide-co-glycolide) (PLGA) and tested in vitro function. FP-loaded PLGA nanoparticles were prepared via nanoprecipitation and morphological characteristics were studied via scanning electron microscopy. FP-loaded nanoparticles demonstrated an encapsulation efficiency of 68.6% ± 0.5% with a drug loading capacity of 4.6% ± 0.04%, were 128.8 ± 0.6 nm in diameter with a polydispersity index of 0.07 ± 0.008, and displayed a zeta potential of -19.4 ± 0.7. A sustained in vitro drug release pattern was observed for up to 7 days. The use of fluticasone nanoparticle decreased lipopolysaccharide (LPS)-induced lactate dehydrogenase release compared with LPS alone in C2C12 treated cells. FP also decreased expression of LPS-induced inflammatory genes in C2C12 treated cells as compared with LPS alone. Taken together, the present study demonstrates in vitro feasibility of PLGA-FP nanoparticle delivery to the skeletal muscle cells, which may be beneficial for treating inflammation.


Assuntos
Portadores de Fármacos/química , Fluticasona/química , Fluticasona/farmacologia , Nanopartículas/química , Animais , Linhagem Celular , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Camundongos , Tamanho da Partícula
9.
Diabetes Obes Metab ; 20(8): 1994-1999, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29577553

RESUMO

Statins are widely prescribed, yet statin muscle pain limits their use, leading to increased cardiovascular risk. No validated therapy for statin muscle pain exists. The goal of the study was to assess whether metformin was associated with reduced muscle pain. A secondary analysis of data from the ACCORD trial was performed. An ACCORD sub-study assessed patients for muscle cramps and leg/calve pain while walking, typical non-severe statin muscle pain symptoms. We compared muscle pain between patients using a statin (n = 445) or both a statin and metformin (n = 869) at baseline. Overall patient characteristics were balanced between groups. Unadjusted analysis showed fewer reports of muscle cramps (35%) and leg/calve pain while walking (40%) with statins and metformin compared to statin only (muscle cramps, 42%; leg/calve pain while walking, 47%). Multivariable regression demonstrated a 22% odds reduction for muscle cramps (P = 0.049) and a 29% odds reduction for leg/calve pain while walking (P = 0.01). Metformin appears to reduce the risk of non-severe statin muscle pain and additional research is needed to confirm the findings and assess metformin's impact on statin adherence and related cardiovascular outcomes.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Cãibra Muscular/prevenção & controle , Músculo Esquelético/efeitos dos fármacos , Mialgia/prevenção & controle , Idoso , Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Registros Eletrônicos de Saúde , Feminino , Seguimentos , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/tratamento farmacológico , Incidência , Masculino , Pessoa de Meia-Idade , Cãibra Muscular/induzido quimicamente , Cãibra Muscular/epidemiologia , Cãibra Muscular/fisiopatologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Mialgia/induzido quimicamente , Mialgia/epidemiologia , Mialgia/fisiopatologia , National Heart, Lung, and Blood Institute (U.S.) , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Caminhada
10.
Can J Physiol Pharmacol ; 96(7): 681-689, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29756463

RESUMO

Glucocorticoids are utilized for their anti-inflammatory properties in the skeletal muscle and arthritis. However, the major drawback of use of glucocorticoids is that it leads to senescence and toxicity. Therefore, based on the idea that decreasing particle size allows for increased surface area and bioavailability of the drug, in the present study, we hypothesized that nanodelivery of dexamethasone will offer increased efficacy and decreased toxicity. The dexamethasone-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared using nanoprecipitation method. The morphological characteristics of the nanoparticles were studied under scanning electron microscope. The particle size of nanoparticles was 217.5 ± 19.99 nm with polydispersity index of 0.14 ± 0.07. The nanoparticles encapsulation efficiency was 34.57% ± 1.99% with in vitro drug release profile exhibiting a sustained release pattern over 10 days. We identified improved skeletal muscle myoblast performance with improved closure of the wound along with increased cell viability at 10 nmol/L nano-dexamethasone-PLGA. However, dexamethasone solution (1 µmol/L) was injurious to cells because the migration efficiency was decreased. In addition, the use of dexamethasone nanoparticles decreased lipopolysaccharide-induced lactate dehydrogenase release compared with dexamethasone solution. Taken together, the present study clearly demonstrates that delivery of PLGA-dexamethasone nanoparticles to the skeletal muscle cells is beneficial for treating inflammation and skeletal muscle function.


Assuntos
Composição de Medicamentos/métodos , Glucocorticoides/farmacologia , Miosite/tratamento farmacológico , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Animais , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Liberação Controlada de Fármacos , Glucocorticoides/uso terapêutico , Ácido Láctico/química , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Mioblastos/efeitos dos fármacos , Nanopartículas/ultraestrutura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
11.
Am J Physiol Heart Circ Physiol ; 312(3): H571-H583, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986658

RESUMO

The present study investigates the physiological role of Kvß1 subunit for sensing pyridine nucleotide (NADH/NAD+) changes in the heart. We used Kvß1.1 knockout (KO) or wild-type (WT) mice and established that Kvß1.1 preferentially binds with Kv4.2 and senses the pyridine nucleotide changes in the heart. The cellular action potential duration (APD) obtained from WT cardiomyocytes showed longer APDs with lactate perfusion, which increases intracellular NADH levels, while the APDs remained unaltered in the Kvß1.1 KO. Ex vivo monophasic action potentials showed a similar response, in which the APDs were prolonged in WT mouse hearts with lactate perfusion; however, the Kvß1.1 KO mouse hearts did not show APD changes upon lactate perfusion. COS-7 cells coexpressing Kv4.2 and Kvß1.1 were used for whole cell patch-clamp recordings to evaluate changes caused by NADH (lactate). These data reveal that Kvß1.1 is required in the mediated inactivation of Kv4.2 currents, when NADH (lactate) levels are increased. In vivo, isoproterenol infusion led to increased NADH in the heart along with QTc prolongation in wild-type mice; regardless of the approach, our data show that Kvß1.1 recognizes NADH changes and modulates Kv4.2 currents affecting AP and QTc durations. Overall, this study uses multiple levels of investigation, including the heterologous overexpression system, cardiomyocyte, ex vivo, and ECG, and clearly depicts that Kvß1.1 is an obligatory sensor of NADH/NAD changes in vivo, with a physiological role in the heart.NEW & NOTEWORTHY Cardiac electrical activity is mediated by ion channels, and Kv4.2 plays a significant role, along with its binding partner, the Kvß1.1 subunit. In the present study, we identify Kvß1.1 as a sensor of pyridine nucleotide changes and as a modulator of Kv4.2 gating, action potential duration, and ECG in the mouse heart.


Assuntos
Coração/efeitos dos fármacos , Canal de Potássio Kv1.1/metabolismo , Miocárdio/metabolismo , Nucleotídeos/metabolismo , Piridinas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Células COS , Chlorocebus aethiops , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Isoproterenol/farmacologia , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Knockout , NAD/metabolismo , Técnicas de Patch-Clamp , Ratos , Canais de Potássio Shal
13.
Mol Cell Biochem ; 436(1-2): 71-78, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28585087

RESUMO

We previously demonstrated the role of Kvß1.1 subunit of voltage-activated potassium channel in heart for its sensory roles in detecting changes in NADH/NAD and modulation of ion channel. However, the pharmacological role for the association of Kvß1 via its binding to ligands such as cortisone and its analogs remains unknown. Therefore, we investigated the significance of Kvß1.1 binding to cortisone analogs and AR inhibitor epalrestat. In addition, the aldose reductase (AR) inhibitor epalrestat was identified as a pharmacological target and modulator of cardiac activity via binding to the Kvß1 subunit. Using a combination of ex vivo cardiac electrophysiology and in silico binding, we identified that Kvß1 subunit binds and interacts with epalrestat. To identify the specificity of the action potential changes, we studied the sensitivity of the action potential prolongation by probing the electrical changes in the presence of 4-aminopyridine and evaluated the specificity of pharmacological effects in the hearts from Kvß1.1 knock out mouse. Our results show that pharmacological modulation of cardiac electrical activity by cortisone analogs and epalrestat is mediated by Kvß1.1.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Aldeído Redutase/antagonistas & inibidores , Cortisona/farmacologia , Inibidores Enzimáticos/farmacologia , Canal de Potássio Kv1.1/metabolismo , Miocárdio/metabolismo , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Potenciais de Ação/genética , Animais , Canal de Potássio Kv1.1/genética , Camundongos , Camundongos Knockout , Rodanina/farmacologia
14.
Exp Physiol ; 101(4): 494-508, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27038296

RESUMO

NEW FINDINGS: What is the central question of this study? The goal of this study was to evaluate sex differences and the role of the potassium channel ß1 (Kvß1) subunit in the heart. What is the main finding and its importance? Genetic ablation of Kvß1.1 in females led to cardiac hypertrophy characterized by increased heart size, prolonged monophasic action potentials, elevated blood pressure and increased myosin heavy chain α (MHCα) expression. In contrast, male mice showed only electrical changes. Kvß1.1 binds the MHCα isoform at the protein level, and small interfering RNA targeted knockdown of Kvß1.1 upregulated MHCα. Cardiovascular disease is the leading cause of death and debility in women in the USA, and cardiac arrhythmias are a major concern. Voltage-gated potassium (Kv) channels along with the binding partners; Kvß subunits are major regulators of the action potential (AP) shape and duration (APD). The regulation of Kv channels by the Kvß1 subunit is unknown in female hearts. In the present study, we hypothesized that the Kvß1 subunit is an important regulator of female cardiac physiology. To test this hypothesis, we ablated (knocked out; KO) the KCNAB1 isoform 1 (Kvß1.1) subunit in mice and evaluated cardiac function and electrical activity by using ECG, monophasic action potential recordings and echocardiography. Our results showed that the female Kvß1.1 KO mice developed cardiac hypertrophy, and the hearts were structurally different, with enlargement and increased area. The electrical derangements caused by Kvß1.1 KO in female mice included long QTc and QRS intervals along with increased APD (APD20-90% repolarization). The male Kvß1.1 KO mice did not develop cardiac hypertrophy, but they showed long QTc and prolonged APD. Molecular analysis showed that several genes that support cardiac hypertrophy were significantly altered in Kvß1.1 KO female hearts. In particular, myosin heavy chain α expression was significantly elevated in Kvß1.1 KO mouse heart. Using a small interfering RNA strategy, we identified that knockdown of Kvß1 increases myosin heavy chain α expression in H9C2 cells. Collectively, changes in molecular and cell signalling pathways clearly point towards a distinct electrical and structural remodelling consistent with cardiac hypertrophy in the Kvß1.1 KO female mice.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Hemodinâmica/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Linhagem Celular , Ecocardiografia/métodos , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Ratos
15.
Pediatr Res ; 79(6): 951-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26859364

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. Based on our recent findings of increased Smad7 expression in surgically resected bowel affected by NEC, we hypothesized that NEC macrophages undergo inflammatory activation because increased Smad7 expression renders these cells resistant to normal, gut-specific, transforming growth factor (TGF)-ß-mediated suppression of inflammatory pathways. METHODS: We used surgically resected human NEC tissue, murine models of NEC-like injury, bone marrow-derived and intestinal macrophages, and RAW264.7 cells. Smad7 and IκB kinase-beta (IKK-ß) were measured by quantitative PCR, western blots, and immunohistochemistry. Promoter activation was confirmed in luciferase reporter and chromatin immunoprecipitation assays. RESULTS: NEC macrophages showed increased Smad7 expression, particularly in areas with severe tissue damage and high bacterial load. Lipopolysaccharide-induced Smad7 expression suppressed TGF-ß signaling and augmented nuclear factor-kappa B (NF-κB) activation and cytokine production in macrophages. Smad7-mediated NF-κB activation was likely mediated via increased expression of IKK-ß, which, further increased Smad7 expression in a feed-forward loop. We show that Smad7 induced IKK-ß expression through direct binding to the IKK-ß promoter and its transcriptional activation. CONCLUSION: Smad7 expression in NEC macrophages interrupts TGF-ß signaling and promotes NF-κB-mediated inflammatory signaling in these cells through increased expression of IKK-ß.


Assuntos
Enterocolite Necrosante/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
16.
Toxicol Appl Pharmacol ; 282(1): 100-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447406

RESUMO

Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD90; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvß subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD & NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias.


Assuntos
Bradicardia/etiologia , Sistema de Condução Cardíaco/metabolismo , Hiperóxia/complicações , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Potenciais de Ação , Animais , Biomarcadores/sangue , Bradicardia/sangue , Bradicardia/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Inibidores de Histona Desacetilases/farmacologia , Hiperóxia/sangue , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , L-Lactato Desidrogenase/sangue , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , NAD/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Tempo , Troponina I/sangue
17.
Circ Res ; 112(4): 721-41, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23410881

RESUMO

Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion-transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide-binding ß-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP(+) to Kvß removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K(+) transporters. These nucleotides also have been shown to modify the activity of the plasma membrane K(ATP) channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit-the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP(+) metabolite, NAADP(+), regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias.


Assuntos
Cátions/metabolismo , Canais Iônicos/fisiologia , Transporte de Íons/fisiologia , NADP/fisiologia , NAD/fisiologia , Animais , Sítios de Ligação , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/fisiologia , ADP-Ribose Cíclica/fisiologia , Células Eucarióticas/metabolismo , Homeostase/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Mamíferos/metabolismo , NADP/análogos & derivados , Fosforilação , Potássio/metabolismo , Células Procarióticas/metabolismo , Sódio/metabolismo
18.
Adv Biol (Weinh) ; : e2400137, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773896

RESUMO

Aging is associated with a decline in cardiac function. Exercise has been shown to effectively reduce the risks of cardiovascular diseases. Here whether a combination of endurance and resistance exercises can improve cardiac function in aged mice during late life is investigated. Through transcriptome analysis, several signaling pathways activated in the hearts of 22-month-old mice after combined exercise, including cardiac muscle contraction, mitophagy, and longevity regulation are identified. Combined exercise training mitigated age-associated pathological cardiac hypertrophy, reduced oxidative stress, cardiac senescence, and enhanced cardiac function. Upstream stimulatory factor 2 (Usf2) is upregulated in the aged mouse hearts with combined exercise compared to sedentary mice. In the human cardiomyocytes senescent model, overexpression of Usf2 led to anti-senescence effects, while knockdown of Usf2 exacerbated cellular senescence. The results suggest that a combination of endurance and resistance exercises, such as swimming and resistance running, can mitigate age-related pathological cardiac remodeling and cardiac dysfunction in late life. These cardioprotective effects are likely due to the activation of Usf2 and its anti-senescence effect. Therefore, Usf2 can potentially be a novel therapeutic target for mitigating age-related cardiac dysfunction.

19.
J Med Food ; 27(3): 267-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354278

RESUMO

Some dietary patterns are associated with inflammation, while others lower inflammation and improve health. However, many people cannot follow a complete, healthy diet. Therefore, this study's aim was to identify specific foods associated chronic inflammation and mortality. The study used Multi-Ethnic Study of Atherosclerosis (MESA) research materials from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center. Three plant-based and three animal-based MESA food categories were chosen based on perceived availability in the western diet. The assessed food categories were avocado, ham, sausage, eggs, greens, and broccoli. Inflammatory markers assessed were interleukin-6 (IL-6), fibrinogen antigen, C-reactive protein, D-Dimer, interleukin-2, matrix metalloproteinase 3, necrosis factor-a soluble receptors, oxidized LDL (oxLDL), and total homocysteine. The primary outcome was the multivariable association of foods and inflammatory markers with all-cause mortality. All inflammatory makers, except oxLDL, were associated with mortality in univariate analysis. The effect was largest with IL-6 and D-dimer. The category of broccoli had the most consistent association in univariate analyses with lower inflammation and lower mortality odds. Low and high broccoli consumption versus no consumption were associated with lower mortality odds in the multivariable models with IL-6 and D-dimer. Consumption of the MESA-defined food category "broccoli" (i.e., broccoli, cabbage, cauliflower, brussels sprouts, sauerkraut, and kimchee) was associated with lower inflammation and lower mortality odds. These findings should be validated in randomized controlled trials testing a "food is medicine" approach to identify which, if any, of these foods may have potential as an herbal therapeutic for chronic inflammation.


Assuntos
Aterosclerose , Brassica , Humanos , Interleucina-6 , Estudos Prospectivos , Biomarcadores , Inflamação , Proteína C-Reativa/metabolismo , Brassica/metabolismo , Dieta
20.
Am J Physiol Heart Circ Physiol ; 304(12): H1651-61, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23585127

RESUMO

Ventricular arrhythmias account for high mortality in cardiopulmonary patients in intensive care units. Cardiovascular alterations and molecular-level changes in response to the commonly used oxygen treatment remains unknown. In the present study we investigated cardiac hypertrophy and cardiac complications in mice subjected to hyperoxia. Results demonstrate that there is a significant increase in average heart weight to tibia length (22%) in mice subjected to hyperoxia treatment vs. normoxia. Functional assessment was performed in mice subjected to hyperoxic treatment, and results demonstrate impaired cardiac function with decreased cardiac output and heart rate. Staining of transverse cardiac sections clearly demonstrates an increase in the cross-sectional area from hyperoxic hearts compared with control hearts. Quantitative real-time RT-PCR and Western blot analysis indicated differential mRNA and protein expression levels between hyperoxia-treated and control left ventricles for ion channels including Kv4.2 (-2 ± 0.08), Kv2.1 (2.54 ± 0.48), and Scn5a (1.4 ± 0.07); chaperone KChIP2 (-1.7 ± 0.06); transcriptional factors such as GATA4 (-1.5 ± 0.05), Irx5 (5.6 ± 1.74), NFκB1 (4.17 ± 0.43); hypertrophy markers including MHC-6 (2.17 ± 0.36) and MHC-7 (4.62 ± 0.76); gap junction protein Gja1 (4.4 ± 0.8); and microRNA processing enzyme Drosha (4.6 ± 0.58). Taken together, the data presented here clearly indicate that hyperoxia induces left ventricular remodeling and hypertrophy and alters the expression of Kv4.2 and MHC6/7 in the heart.


Assuntos
Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Hiperóxia/complicações , Canais de Potássio Shal/metabolismo , Animais , Débito Cardíaco , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Conexina 43/genética , Conexina 43/metabolismo , Frequência Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Canais de Potássio Shal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA