RESUMO
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Política Ambiental/legislação & jurisprudência , Fenômenos Geológicos , Mudança Climática , Conservação dos Recursos Naturais/legislação & jurisprudênciaRESUMO
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P < 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose (conservation planning for a particular species in a particular geography) yield different answers and thus different conservation strategies. We assert that using only one habitat model (even if validated) as the foundation of a conservation plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and increase efficacy of conservation action when models corroborate one another and increase understanding of the system when they do not.
Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Biológicos , Modelos Estatísticos , Animais , Estados UnidosRESUMO
Vulnerability assessments combine quantitative and qualitative evaluations of the exposure, sensitivity, and adaptive capacity of species or natural communities to current and future threats. When combined with the economic, ecological or evolutionary value of the species, vulnerability assessments quantify the relative risk to regional species and natural communities and can enable informed prioritization of conservation efforts. Vulnerability assessments are common practice in conservation biology, including the potential impacts of future climate scenarios. However, geographic variation in scenarios and vulnerabilities is rarely quantified. This gap is particularly limiting for informing ecosystem management given that conservation practices typically vary by sociopolitical boundaries rather than by ecological boundaries. To support prioritization of conservation actions across a range of spatial scales, we conducted the Gulf Coast Vulnerability Assessment (GCVA) for four natural communities and eleven focal species around the Gulf of Mexico based on current and future threats from climate change and land-use practices out to 2060. We used the Standardized Index of Vulnerability and Value (SIVVA) tool to assess both natural community and species vulnerabilities. We observed greater variation across ecologically delineated subregions within the Gulf Coast of the U.S. than across climate scenarios. This novel finding suggests that future vulnerability assessments incorporate regional variation and that conservation prioritization may vary across ecological subregions. Across subregions and climate scenarios the most prominent threats were legacy effects, primarily from habitat loss and degradation, that compromised the adaptive capacity of species and natural communities. The second most important threats were future threats from sea-level rise. Our results suggest that the substantial threats species and natural communities face from climate change and sea-level rise would be within their adaptive capacity were it not for historic habitat loss, fragmentation, and degradation.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Monitorização de Parâmetros Ecológicos , Ecossistema , Modelos Biológicos , Golfo do México , Estados UnidosRESUMO
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.