Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795418

RESUMO

Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE: This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.


Assuntos
Genoma Viral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/veterinária , Filogenia , Doenças dos Suínos/epidemiologia , Animais , Teorema de Bayes , Monitoramento Epidemiológico , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N2/classificação , Vírus da Influenza A Subtipo H3N2/classificação , Cadeias de Markov , Método de Monte Carlo , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Vietnã/epidemiologia
2.
BMC Vet Res ; 12(1): 227, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27724934

RESUMO

BACKGROUND: Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. RESULTS: From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that "having more than 1,000 pigs" was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. CONCLUSIONS: We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam.


Assuntos
Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Criação de Animais Domésticos , Animais , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/epidemiologia , Vietnã/epidemiologia
3.
Poult Sci ; 94(4): 650-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25743422

RESUMO

In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.


Assuntos
Evolução Molecular , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Aves Domésticas , Animais , Genótipo , Influenza Aviária/virologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/veterinária , Vietnã/epidemiologia
4.
Trop Anim Health Prod ; 46(1): 271-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24061688

RESUMO

Newcastle disease virus (NDV) causes significant economic losses to the poultry industry in Southeast Asia. In the present study, 12 field isolates of NDV were recovered from dead village chickens in Vietnam between 2007 and 2012, and were characterized. All the field isolates were classified as velogenic. Based on the sequence analysis of the F variable region, two distinct genetic groups (Vietnam genetic groups G1 and G2) were recognized. Phylogenetic analysis revealed that all the 12 field isolates fell into the class II genotype VII cluster. Ten of the field isolates, classified as Vietnam genetic group G1, were closely related to VIIh viruses that had been isolated from Indonesia, Malaysia, and Cambodia since the mid-2000s, while the other two field isolates, of Vietnam genetic group G2, clustered with VIId viruses, which were predominantly circulating in China and Far East Asia. Our results indicate that genotype VII viruses, especially VIIh viruses, are predominantly responsible for the recent epizootic of the disease in Vietnam.


Assuntos
Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/epidemiologia , Sequência de Aminoácidos , Animais , Galinhas/genética , Regulação Viral da Expressão Gênica/fisiologia , Genótipo , Malásia , Epidemiologia Molecular , Dados de Sequência Molecular , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Filogenia , Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Vietnã/epidemiologia
5.
Poult Sci ; 92(8): 2012-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23873548

RESUMO

From the avian influenza virus (AIV) outbreaks and market surveillances in Vietnam during November 2011 and March 2012, a total of 196 AIV were isolated. Although H5N1 highly pathogenic avian influenza (HPAI) was the most prevalent subtype in Vietnam, 57 low pathogenic avian influenza (LPAI) viruses were identified from mainly domestic ducks and some chickens. Of note, various subtypes of LPAI viruses were isolated from domestic ducks in Vietnam: H3 (n = 16), H4 (n = 4), H6 (n = 24), H7 (n = 1), and H9 (n = 10). Geographically, the LPAI viruses were identified in different regions of Vietnam. Phylogenetic analysis of HA and NA genes in LPAIV in Vietnam showed that some H3 (group I) and H4 subtypes AIV clustered with the viruses of several Asian isolates from domestic poultry and wild birds. However, the H6, H9, and some H3 (group II and III) subtypes AIV were closely related to isolates from domestic poultry in Southern China. In addition, whereas the N2 and N6 subtypes AIV belonged to the Eurasian lineage, the N8 subtype AIV was classified to be both of Eurasian and American lineage. These findings revealed that the regional trade and wild birds play a key role transmission of LPAIV in domestic ducks in Vietnam. Further surveillance at the intercountry level is needed to understand the epidemiology of these viruses and to cope with emergence of novel AIV types.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Hemaglutininas/classificação , Hemaglutininas/genética , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Filogenia , Vigilância da População , Aves Domésticas , Vietnã/epidemiologia
6.
Avian Dis ; 56(3): 479-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23050463

RESUMO

In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The differences in response to virus infection could not be explained by differences in the innate immune responses between the different types of ducks when examined at 2 days dpi, and earlier time points need to be evaluated.


Assuntos
Patos , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Animais , Antígenos Virais , Patos/genética , Imunidade Inata , Influenza Aviária/epidemiologia , Influenza Aviária/patologia , Vietnã/epidemiologia
7.
Vet World ; 14(3): 794-802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935430

RESUMO

BACKGROUND AND AIM: African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS: The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS: The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION: The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.

8.
Vet World ; 14(7): 1853-1866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34475709

RESUMO

BACKGROUND AND AIM: African swine fever (ASF) is currently the most prevalent disease in swine. The disease is spreading throughout primary swine-producing countries with heavy losses in population and revenue. To date, no successful vaccines or medications have been reported. This study aimed to design and develop a blend of natural essential oils and test its efficacy against the ASF virus (ASFV) in swine. MATERIALS AND METHODS: We attempted to develop a natural oil blend formulation (NOBF) and determine its efficacy against the ASFV. This study follows on from a previously published in vitro study that reported that the NOBF has anti-ASFV properties. A study was designed using 21 healthy piglets of triple-cross (Landrace + Yorkshire + Durok) crossbred pathogen-free pigs with an average weight of 15 kg. The study consisted of NOBF-incubated, NOBF, positive control, and negative control groups. The NOBF groups were administered NOBF (80 mL/ton mixed in drinking water) beginning 10 days before the challenge and continuing throughout the experiment. The positive and negative control pigs consumed regular drinking water. The pigs were challenged by a sublethal dose of pure isolate ASFV strain Vietnam National University of Agriculture-ASFV-L01/HN/04/19 inoculation with 103.5 HAD50/dose through the intramuscular route. There were sic pigs in each group, three pigs directly IM challenged, and three pigs were considered cohoused pigs. RESULTS: Both challenged (three) and cohoused (three) pigs in the positive control showed clinical signs of ASFV infection, as detected by real-time polymerase chain reaction (RT-PCR) in blood samples, oral swabs, and feces. There was 100% cumulative mortality, that is, both challenged and contact pigs died in the positive control group on day 20 of infection. No signs of infection or mortality were observed in the NOBF-incubated group. The challenged pigs in the NOBF-direct challenge group showed clinical signs and mortality, whereas no clinical signs or symptoms occurred in the cohoused pigs. The immunoglobulin G (IgG) level of the contact pigs was the highest in the treatment group and the lowest in the positive control group. The IgM level of the contact pigs in the treatment groups was the lowest, whereas that of the positive control was the highest. The RT-PCR test showed that the ASFV was deactivated in the NOBF-incubated group. The challenged and contact pigs of the positive control group had high Ct values. The challenged pigs of the NOBF group had high Ct values, whereas the contact pigs from the same group and those of the negative control were negative for the ASFV, determined by PCR, in all samples. The comparison of the challenged groups showed that the appearance of the virus was delayed by at least 2 days in the NOBF group compared to the positive control group. CONCLUSION: The results showed that NOBF can prevent the spread of the ASFV in a population. Moreover, NOBF can enhance the pig humoral immune system by enhancing IgG levels and reducing IgM levels. This study successfully demonstrated that NOBF is an anti-ASFV agent, which prevents horizontal transmission and enhances pig humoral immunity.

9.
Avian Dis ; 54(1 Suppl): 262-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20521643

RESUMO

Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge and have become endemic in parts of Asia and Africa. Vaccination has been employed in Vietnam as part of AI control programs. Domestic ducks, which make up a large part of poultry in Vietnam, have been recognized as one of the primary factors in the spread of AI in this country. As a result, ducks have been included in the vaccination programs. Despite the effort to control AI in Vietnam, eradication of the disease has not been possible, due in part to the emergence and spread of new viruses. Here, we tested the abilities of avian influenza oil emulsion vaccines of different genetic origins to protect against disease and viral shedding in both 2-wk-old white leghorn chickens and 1-wk-old Pekin ducks. Seventy-five to 100% of vaccinated chickens were protected from mortality, but viral shedding occurred for at least 4 days post challenge. All but one vaccinated duck were protected from mortality; however, all groups shed virus up through at least 5 days postchallenge, depending on the vaccine and challenge virus used. Differences in levels of hemagglutination inhibition (HI) antibody titers induced by the vaccines were observed in both chickens and ducks. Although the vaccines tested were effective in protecting against disease and mortality, updated and more efficacious vaccines are likely needed to maintain optimal protection.


Assuntos
Galinhas , Patos , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Organismos Livres de Patógenos Específicos , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia , Vietnã/epidemiologia
10.
Vaccine ; 38(3): 663-672, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31669062

RESUMO

The occurrence of severe outbreaks of highly pathogenic avian influenza in Korea led to establishment of a national antigen bank for emergency preparedness. Here, we developed five vaccines for this bank (clade 2.3.2.1C, clade 2.3.4.4A, B, C, and D) by reverse genetics, inactivated them with formalin, and evaluated the protective efficacy and potency of serial dilutions against lethal homologous challenge in specific-pathogen-free chickens. After vaccination with one dose, each vaccine resulted in 100% survival, with no clinical symptoms, or lack of detectable virus shedding, and high levels of pre-challenge protective immunity (8.4-10.2 log2). After vaccination with one-tenth of the full dose, protection was similar to that with the full dose. After vaccination with one-hundredth of the initial dose, survival was 20-80%, and all vaccines showed virus shedding. Four vaccines (excluding clade 2.3.2.1C) had satisfactory potency. In antibody-persistence tests, all vaccines maintained long-lasting protective immunity. Our results suggest that inactivated reverse-genetics vaccines genetically matched to outbreak viruses provide adequate protection after a single vaccination.


Assuntos
Antígenos Virais/administração & dosagem , Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/prevenção & controle , Vacinas de Produtos Inativados/administração & dosagem , Animais , Antígenos Virais/imunologia , Galinhas , Células HEK293 , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , República da Coreia , Resultado do Tratamento , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/fisiologia
11.
Emerg Microbes Infect ; 7(1): 100, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855467

RESUMO

Highly pathogenic avian influenza (HPAI) A(H5N1) viruses pose a significant economic burden to the poultry industry worldwide and have pandemic potential. Poultry vaccination against HPAI A(H5N1) viruses has been an important component of HPAI control measures and has been performed in Vietnam since 2005. To systematically assess antigenic matching of current vaccines to circulating field variants, we produced a panel of chicken and ferret antisera raised against historical and contemporary Vietnamese reference viruses representing clade variants that were detected between 2001 and 2014. The antisera were used for hemagglutination inhibition (HI) assays to generate data sets for analysis by antigenic cartography, allowing for a direct comparison of results from chicken or ferret antisera. HI antigenic maps, developed with antisera from both hosts, revealed varying patterns of antigenic relationships and clustering of viruses that were dependent on the clade of viruses analyzed. Antigenic relationships between existing poultry vaccines and circulating field viruses were also aligned with in vivo protection profiles determined by previously reported vaccine challenge studies. Our results establish the feasibility and utility of HPAI A(H5N1) antigenic characterization using chicken antisera and support further experimental and modeling studies to investigate quantitative relationships between genetic variation, antigenic drift and correlates of poultry vaccine protection in vivo.


Assuntos
Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Soros Imunes/imunologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Embrião de Galinha , Galinhas/sangue , Galinhas/virologia , Feminino , Furões/sangue , Furões/virologia , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Soros Imunes/sangue , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/sangue , Influenza Aviária/virologia , Masculino , Filogenia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Especificidade da Espécie , Vietnã
12.
BMC Infect Dis ; 6: 40, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16512903

RESUMO

BACKGROUND: Continuous outbreaks of the highly pathogenic H5N1 avian influenza A in Asia has resulted in an urgent effort to improve current diagnostics to aid containment of the virus and lower the threat of a influenza pandemic. We report here the development of a PCR-based assay that is highly specific for the H5N1 avian influenza A virus. METHODS: A one-step reverse-transcription PCR assay was developed to detect the H5N1 avian influenza A virus. The specificity of the assay was shown by testing sub-types of influenza A virus and other viral and bacterial pathogens; and on field samples. RESULTS: Validation on 145 field specimens from Vietnam and Malaysia showed that the assay was specific without cross reactivity to a number of other infuenza strains as well as human respiratory related pathogens. Detection was 100% from allantoic fluid in H5N1 positive samples, suggesting it to be a reliable sampling source for accurate detection. CONCLUSION: The assay developed from this study indicates that the primers are specific for the H5N1 influenza virus. As shown by the field tested results, this assay would be highly useful as a diagnostic tool to help identify and control influenza epidemics.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reações Cruzadas , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Vet Microbiol ; 192: 194-203, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27527783

RESUMO

A total of 3,045 environmental samples and oropharyngeal and cloacal swabs from apparently healthy poultry have been collected at three live bird markets (LBMs) at which practices were applied to reduce avian influenza (AI) virus transmission (intervention LBMs) and six conventional LBMs (non-intervention LBMs) in Thua Thien Hue province in 2014 to evaluate the efficacy of the intervention LBMs. The 178 AI viruses, including H3 (19 viruses), H4 (2), H5 (8), H6 (30), H9 (114), and H11 (5), were isolated from domestic ducks, muscovy ducks, chickens, and the environment. The prevalence of AI viruses in intervention LBMs (6.1%; 95% CI: 5.0-7.5) was similar to that in non-intervention LBMs (5.6%; 95% CI: 4.5-6.8; χ(2)=0.532; df=1; P=0.53) in the study area. Eight H5N6 highly pathogenic avian influenza (HPAI) viruses were isolated from apparently healthy ducks, muscovy ducks, and an environmental sample in an intervention LBM. The hemagglutinin genes of the H5N6 HPAI viruses belonged to the genetic clade 2.3.4.4, and the antigenicity of the H5N6 HPAI viruses differed from the H5N1 HPAI viruses previously circulating in Vietnam. Phylogenetic and antigenic analyses of the H6 and H9 viruses isolated in both types of LBMs revealed that they were closely related to the viruses isolated from domestic birds in China, Group II of H6 viruses and Y280 lineage of H9 viruses. These results indicate that the interventions currently applied in LBMs are insufficient to control AI. A risk analysis should be conducted to identify the key factors contributing to AI virus prevalence in intervention LBMs.


Assuntos
Antígenos Virais/genética , Galinhas , Patos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , Vietnã/epidemiologia
14.
Infect Genet Evol ; 44: 530-540, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27340015

RESUMO

Despite their classification as low pathogenicity avian influenza viruses (LPAIV), A/H9N2 viruses cause significant losses in poultry in many countries throughout Asia, the Middle East and North Africa. To date, poultry surveillance in Vietnam has focused on detection of influenza H5 viruses, and there is limited understanding of influenza H9 epidemiology and transmission dynamics. We determined prevalence and diversity of influenza A viruses in chickens from live bird markets (LBM) of 7 northern Vietnamese provinces, using pooled oropharyngeal swabs collected from October to December 2014. Screening by real time RT-PCR revealed 1207/4900 (24.6%) of pooled swabs to be influenza A virus positive; overall prevalence estimates after accounting for pooling (5 swabs/pools) were 5.8% (CI 5.4-6.0). Subtyping was performed on 468 pooled swabs with M gene Ct<26. No influenza H7 was detected; 422 (90.1%) were H9 positive; and 22 (4.7%) were H5 positive. There was no evidence was of interaction between H9 and H5 virus detection rates. We sequenced 17 whole genomes of A/H9N2, 2 of A/H5N6, and 11 partial genomes. All H9N2 viruses had internal genes that clustered with genotype 57 and were closely related to Chinese human isolates of A/H7N9 and A/H10N8. Using a nucleotide divergence cutoff of 98%, we identified 9 distinct H9 genotypes. Phylogenetic analysis suggested multiple introductions of H9 viruses to northern Vietnam rather than in-situ transmission. Further investigations of H9 prevalence and diversity in other regions of Vietnam are warranted to assess H9 endemicity elsewhere in the country.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Genoma Viral , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Mutação , Filogenia , Filogeografia , Prevalência , Conformação Proteica , Vigilância em Saúde Pública , Vietnã/epidemiologia
15.
Genome Announc ; 3(4)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26294636

RESUMO

The complete genome sequence of a foot-and-mouth disease virus (FMDV) found in an isolate collected in northern Vietnam in 2013 appears to be closely related to a genetic cluster formed with isolates from China, Mongolia, and Russia in 2013. All of these are classified to fall within the Sea-97 lineage, for which little complete genome data are available.

16.
Vaccine ; 29(38): 6549-57, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21771626

RESUMO

Domestic ducks are key intermediates in the transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses, and therefore are included in vaccination programs to control H5N1 HPAI. Although vaccination has proven effective in protecting ducks against disease, different species of domestic ducks appear to respond differently to vaccination, and shedding of the virus may still occur in clinically healthy vaccinated populations. In this study we compared the response to vaccination between two common domestic duck species, Pekin (Anas platyrhynchos domesticus) and Muscovy (Cairina moschata), which were vaccinated with a commercial inactivated vaccine using one of three different schedules in order to elicit protection to H5N1 HPAI before one month of age. Clear differences in responses to vaccination were observed; the Muscovy ducks developed lower viral antibody titers induced by the same vaccination as Pekin ducks and presented with higher morbidity and mortality after challenge with an H5N1 HPAI virus. When comparing the response to infection in non-vaccinated ducks, differences were also observed, with infected Muscovy ducks presenting a lower mean death time and more severe neurological signs than Pekin ducks. However Pekin ducks had significantly higher body temperatures and higher levels of nitric oxide in the blood at 2 days post challenge than Muscovy ducks, indicating possible differences in innate immune responses. Comparison of the expression of innate immune related genes in spleens of the non-vaccinated infected ducks showed differences including significantly higher levels of expression of RIG-I in Pekin ducks and of IL-6 in Muscovy ducks. Both duck species showed an up-regulation of IFNα and MHC-I expression, and a down-regulation of MHC-II. In conclusion, differences in response to infection and vaccination were observed between the two domestic duck species. This information should be taken into account when developing effective vaccination programs for controlling H5N1 HPAI in different species of ducks.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Temperatura Corporal , Patos , Perfilação da Expressão Gênica , Influenza Aviária/mortalidade , Influenza Aviária/patologia , Leucócitos Mononucleares/imunologia , Óxido Nítrico/sangue , Baço/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA