Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EMBO J ; 36(4): 425-440, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069708

RESUMO

Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos , Proteínas dos Microfilamentos/química , Ubiquitina-Proteína Ligases Nedd4 , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Complexo de Endopeptidases do Proteassoma/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Proteínas de Saccharomyces cerevisiae/química
2.
Proc Natl Acad Sci U S A ; 114(5): E869-E878, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096388

RESUMO

Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition.


Assuntos
Calmodulina/metabolismo , Síndrome do QT Longo/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Células CHO , Sinalização do Cálcio , Calmodulina/química , Cricetinae , Cricetulus , Humanos , Proteínas Imobilizadas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Mutação Puntual , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Espectrometria de Fluorescência
3.
Biochemistry ; 55(38): 5353-65, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27564677

RESUMO

The Kv7 (KCNQ) channel family, comprising voltage-gated potassium channels, plays major roles in fine-tuning cellular excitability by reducing firing frequency and controlling repolarization. Kv7 channels have a unique intracellular C-terminal (CT) domain bound constitutively by calmodulin (CaM). This domain plays key functions in channel tetramerization, trafficking, and gating. CaM binds to the proximal CT, comprising helices A and B. Kv7.2 and Kv7.3 are expressed in neural tissues. Together, they form the heterotetrameric M channel. We characterized Kv7.2, Kv7.3, and chimeric Kv7.3 helix A-Kv7.2 helix B (Q3A-Q2B) proximal CT/CaM complexes by solution methods at various Ca(2+)concentrations and determined them all to have a 1:1 stoichiometry. We then determined the crystal structure of the Q3A-Q2B/CaM complex at high Ca(2+) concentration to 2.0 Å resolution. CaM hugs the antiparallel coiled coil of helices A and B, braced together by an additional helix. The structure displays a hybrid apo-Ca(2+) CaM conformation even though four Ca(2+) ions are bound. Our results pinpoint unique interactions enabling the possible intersubunit pairing of Kv7.3 helix A and Kv7.2 helix B while underlining the potential importance of Kv7.3 helix A's role in stabilizing channel oligomerization. Also, the structure can be used to rationalize various channelopathic mutants. Functional testing of the chimeric channel found it to have a voltage-dependence similar to the M channel, thereby demonstrating helix A's importance in imparting gating properties.


Assuntos
Calmodulina/química , Conformação Proteica , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Canais de Potássio/química , Proteínas Recombinantes/química
4.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355140

RESUMO

Inactivation of voltage-gated K+ (Kv) channels mostly occurs by fast N-type or/and slow C-type mechanisms. Here, we characterized a unique mechanism of inactivation gating comprising two inactivation states in a member of the Kv channel superfamily, Kv7.1. Removal of external Ca2+ in wild-type Kv7.1 channels produced a large, voltage-dependent inactivation, which differed from N- or C-type mechanisms. Glu295 and Asp317 located, respectively, in the turret and pore entrance are involved in Ca2+ coordination, allowing Asp317 to form H-bonding with the pore helix Trp304, which stabilizes the selectivity filter and prevents inactivation. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+-calmodulin prevented Kv7.1 inactivation triggered by Ca2+-free external solutions, where Ser182 at the S2-S3 linker relays the calmodulin signal from its inner boundary to the external pore to allow proper channel conduction. Thus, we revealed a unique mechanism of inactivation gating in Kv7.1, exquisitely controlled by external Ca2+ and allosterically coupled by internal PIP2 and Ca2+-calmodulin.


Assuntos
Calmodulina , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Calmodulina/química , Família , Fosfatidilinositol 4,5-Difosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA