Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 179: 106068, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898614

RESUMO

BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.


Assuntos
Demência Frontotemporal , Doença de Pick , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Proteína C9orf72/genética , Acetilcolina , Dopamina , Serotonina , Mutação , Imageamento por Ressonância Magnética/métodos , Proteínas tau/genética
2.
Brain ; 145(12): 4398-4408, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35903017

RESUMO

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Assuntos
Atrofia de Múltiplos Sistemas , Humanos , Estudos de Coortes , Estudos Transversais , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores , Progressão da Doença
3.
Cereb Cortex ; 32(18): 3937-3944, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35034126

RESUMO

The paracingulate sulcus is a tertiary sulcus formed during the third trimester. In healthy individuals paracingulate sulcation is more prevalent in the left hemisphere. The anterior cingulate and paracingulate gyri are focal points of neurodegeneration in behavioral variant frontotemporal dementia (bvFTD). This study aims to determine the prevalence and impact of paracingulate sulcation in bvFTD. Structural magnetic resonance images of individuals with bvFTD (n = 105, mean age 66.9 years), Alzheimer's disease (n = 92, 73.3), and healthy controls (n = 110, 62.4) were evaluated using standard protocol for hemispheric paracingulate sulcal presence. No difference in left hemisphere paracingulate sulcal frequency was observed between groups; 0.72, 0.79, and 0.70, respectively, in the bvFTD, Alzheimer's disease, and healthy control groups, (P = 0.3). A significant impact of right (but not left) hemispheric paracingulate sulcation on age at disease onset was identified in bvFTD (mean 60.4 years where absent vs. 63.8 where present [P = 0.04, Cohen's d = 0.42]). This relationship was not observed in Alzheimer's disease. These findings demonstrate a relationship between prenatal neuronal development and the expression of a neurodegenerative disease providing a gross morphological example of brain reserve.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Idade de Início , Idoso , Doença de Alzheimer/patologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Humanos , Imageamento por Ressonância Magnética
4.
Alzheimers Dement ; 17(6): 969-983, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33316852

RESUMO

INTRODUCTION: Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy. METHODS: Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling. RESULTS: Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions. DISCUSSION: Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD.


Assuntos
Apatia , Encéfalo/patologia , Demência Frontotemporal/genética , Sintomas Prodrômicos , Atrofia/patologia , Disfunção Cognitiva/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação/genética
5.
Alzheimers Res Ther ; 16(1): 10, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216961

RESUMO

BACKGROUND: The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS: A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS: The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS: The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Proteínas de Neurofilamentos , Biomarcadores , Atrofia
6.
Neuroimage Clin ; 37: 103281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495857

RESUMO

BACKGROUND: Hypothalamic dysregulation plays an established role in eating abnormalities in behavioural variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS). Its contribution to cognitive and behavioural impairments, however, remains unexplored. METHODS: Correlation between hypothalamic subregion atrophy and cognitive and behavioural impairments was examined in a large sample of 211 participants (52 pure ALS, 42 mixed ALS-FTD, 59 bvFTD, and 58 age- and education- matched healthy controls). RESULTS: Graded variation in hypothalamic involvement but relative sparing of the inferior tuberal region was evident across all patient groups. Bilateral anterior inferior, anterior superior, and posterior hypothalamic subregions were selectively implicated in memory, fluency and processing speed impairments in addition to apathy and abnormal eating habits, taking into account disease duration, age, sex, total intracranial volume, and acquisition parameters (all p ≤ .001). CONCLUSIONS: These findings revealed that subdivisions of the hypothalamus are differentially affected in the ALS-FTD spectrum and contribute to canonical cognitive and behavioural disturbances beyond eating abnormalities. The anterior superior and superior tuberal subregions containing the paraventricular nucleus (housing oxytocin-producing neurons) displayed the greatest volume loss in bvFTD and ALS-FTD, and ALS, respectively. Importantly, the inferior tuberal subregion housing the arcuate nucleus (containing different groups of neuroendocrine neurons) was selectively preserved across the ALS-FTD spectrum, supporting pathophysiological findings of discrete neuropeptide expression abnormalities that may underlie the pathogenesis of autonomic and metabolic abnormalities and potentially certain cognitive and behavioural symptom manifestations, representing avenues for more refined symptomatic treatment targets.


Assuntos
Esclerose Lateral Amiotrófica , Apatia , Demência Frontotemporal , Humanos , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Comportamento Alimentar , Hipotálamo/patologia
7.
Brain Commun ; 5(2): fcad061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970046

RESUMO

Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as 'normal' or 'abnormal' based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the 'normal' and 'abnormal' groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.

8.
Neuroimage Clin ; 35: 103084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35717886

RESUMO

BACKGROUND: Frontotemporal dementia (FTD) is a spectrum of diseases characterised by language, behavioural and motor symptoms. Among the different subcortical regions implicated in the FTD symptomatology, the hypothalamus regulates various bodily functions, including eating behaviours which are commonly present across the FTD spectrum. The pattern of specific hypothalamic involvement across the clinical, pathological, and genetic forms of FTD has yet to be fully investigated, and its possible associations with abnormal eating behaviours have yet to be fully explored. METHODS: Using an automated segmentation tool for volumetric T1-weighted MR images, we measured hypothalamic regional volumes in a cohort of 439 patients with FTD (197 behavioural variant FTD [bvFTD]; 7 FTD with associated motor neurone disease [FTD-MND]; 99 semantic variant primary progressive aphasia [svPPA]; 117 non-fluent variant PPA [nfvPPA]; 19 PPA not otherwise specified [PPA-NOS]) and 118 age-matched controls. We compared volumes across the clinical, genetic (29 MAPT, 32 C9orf72, 23 GRN), and pathological diagnoses (61 tauopathy, 40 TDP-43opathy, 4 FUSopathy). We correlated the volumes with presence of abnormal eating behaviours assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). RESULTS: On average, FTD patients showed 14% smaller hypothalamic volumes than controls. The groups with the smallest hypothalamic regions were FTD-MND (20%), MAPT (25%) and FUS (33%), with differences mainly localised in the anterior and posterior regions. The inferior tuberal region was only significantly smaller in tauopathies (MAPT and Pick's disease) and in TDP-43 type C compared to controls and was the only regions that did not correlate with eating symptoms. PPA-NOS and nfvPPA were the groups with the least frequent eating behaviours and the least hypothalamic involvement. CONCLUSIONS: Abnormal hypothalamic volumes are present in all the FTD forms, but different hypothalamic regions might play a different role in the development of abnormal eating behavioural and metabolic symptoms. These findings might therefore help in the identification of different underlying pathological mechanisms, suggesting the potential use of hypothalamic imaging biomarkers and the research of potential therapeutic targets within the hypothalamic neuropeptides.


Assuntos
Demência Frontotemporal , Doença dos Neurônios Motores , Doença de Pick , Demência Frontotemporal/patologia , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Imageamento por Ressonância Magnética , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/patologia , Doença de Pick/patologia
9.
Brain Sci ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35326292

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of the same disease spectrum. While thalamic−cerebellar degeneration has been observed in C9orf72 expansion carriers, the exact subregions involved across the clinical phenotypes of the ALS−FTD spectrum remain unclear. Using MRIs from 58 bvFTD, 41 ALS−FTD and 52 ALS patients compared to 57 controls, we aimed to delineate thalamic and cerebellar subregional changes across the ALS−FTD spectrum and to contrast these profiles between cases with and without C9orf72 expansions. Thalamic involvement was evident across all ALS−FTD clinical phenotypes, with the laterodorsal nucleus commonly affected across all groups (values below the 2.5th control percentile). The mediodorsal nucleus was disproportionately affected in bvFTD and ALS−FTD but not in ALS. Cerebellar changes were only observed in bvFTD and ALS−FTD predominantly in the superior−posterior region. Comparison of genetic versus sporadic cases revealed significantly lower volumes exclusively in the pulvinar in C9orf72 expansion carriers compared to non-carriers, irrespective of clinical syndrome. Overall, bvFTD showed significant correlations between thalamic subregions, level of cognitive dysfunction and severity of behavioural symptoms. Notably, strong associations were evident between mediodorsal nucleus atrophy and severity of behavioural changes in C9orf72-bvFTD (r = −0.9, p < 0.0005). Our findings reveal distinct thalamic and cerebellar atrophy profiles across the ALS−FTD spectrum, with differential impacts on behaviour and cognition, and point to a unique contribution of C9orf72 expansions in the clinical profiles of these patients.

10.
Neurobiol Aging ; 114: 94-104, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339292

RESUMO

Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.


Assuntos
Demência Frontotemporal , Doença de Pick , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Granulinas/genética , Humanos , Imageamento por Ressonância Magnética , Mutação , Doença de Pick/patologia
11.
Brain Commun ; 3(3): fcab158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458729

RESUMO

Whilst initial anatomical studies of frontotemporal dementia focussed on cortical involvement, the relevance of subcortical structures to the pathophysiology of frontotemporal dementia has been increasingly recognized over recent years. Key structures affected include the caudate, putamen, nucleus accumbens, and globus pallidus within the basal ganglia, the hippocampus and amygdala within the medial temporal lobe, the basal forebrain, and the diencephalon structures of the thalamus, hypothalamus and habenula. At the most posterior aspect of the brain, focal involvement of brainstem and cerebellum has recently also been shown in certain subtypes of frontotemporal dementia. Many of the neuroimaging studies on subcortical structures in frontotemporal dementia have been performed in clinically defined sporadic cases. However, investigations of genetically- and pathologically-confirmed forms of frontotemporal dementia are increasingly common and provide molecular specificity to the changes observed. Furthermore, detailed analyses of sub-nuclei and subregions within each subcortical structure are being added to the literature, allowing refinement of the patterns of subcortical involvement. This review focuses on the existing literature on structural imaging and neuropathological studies of subcortical anatomy across the spectrum of frontotemporal dementia, along with investigations of brain-behaviour correlates that examine the cognitive sequelae of specific subcortical involvement: it aims to 'look beneath the surface' and summarize the patterns of subcortical involvement have been described in frontotemporal dementia.

12.
Brain Commun ; 3(4): fcab257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805999

RESUMO

The disease syndromes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke's Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant FTD (n = 58) and ALS-FTD (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-ALS patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the ALS-FTD and behavioural variant FTD groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76-90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in ALS-FTD relative to pure-ALS. In contrast, pure-ALS displayed significantly greater parietal atrophy. Both behavioural variant FTD and ALS-FTD were characterized by volume decrease in the frontal lobes relative to pure-ALS. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in ALS-FTD compared with pure-ALS, and greater left motor cortex and insula atrophy relative to behavioural variant FTD. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the ALS-FTD spectrum, with key structures including the motor cortex and insula. Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum.

13.
Neuroimage Clin ; 30: 102646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895632

RESUMO

BACKGROUND: Studies have previously shown evidence for presymptomatic cortical atrophy in genetic FTD. Whilst initial investigations have also identified early deep grey matter volume loss, little is known about the extent of subcortical involvement, particularly within subregions, and how this differs between genetic groups. METHODS: 480 mutation carriers from the Genetic FTD Initiative (GENFI) were included (198 GRN, 202 C9orf72, 80 MAPT), together with 298 non-carrier cognitively normal controls. Cortical and subcortical volumes of interest were generated using automated parcellation methods on volumetric 3 T T1-weighted MRI scans. Mutation carriers were divided into three disease stages based on their global CDR® plus NACC FTLD score: asymptomatic (0), possibly or mildly symptomatic (0.5) and fully symptomatic (1 or more). RESULTS: In all three groups, subcortical involvement was seen at the CDR 0.5 stage prior to phenoconversion, whereas in the C9orf72 and MAPT mutation carriers there was also involvement at the CDR 0 stage. In the C9orf72 expansion carriers the earliest volume changes were in thalamic subnuclei (particularly pulvinar and lateral geniculate, 9-10%) cerebellum (lobules VIIa-Crus II and VIIIb, 2-3%), hippocampus (particularly presubiculum and CA1, 2-3%), amygdala (all subregions, 2-6%) and hypothalamus (superior tuberal region, 1%). In MAPT mutation carriers changes were seen at CDR 0 in the hippocampus (subiculum, presubiculum and tail, 3-4%) and amygdala (accessory basal and superficial nuclei, 2-4%). GRN mutation carriers showed subcortical differences at CDR 0.5 in the presubiculum of the hippocampus (8%). CONCLUSIONS: C9orf72 expansion carriers show the earliest and most widespread changes including the thalamus, basal ganglia and medial temporal lobe. By investigating individual subregions, changes can also be seen at CDR 0 in MAPT mutation carriers within the limbic system. Our results suggest that subcortical brain volumes may be used as markers of neurodegeneration even prior to the onset of prodromal symptoms.


Assuntos
Demência Frontotemporal , Atrofia , Proteína C9orf72/genética , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Humanos , Imageamento por Ressonância Magnética , Mutação/genética , Sintomas Prodrômicos , Progranulinas/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA