Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022877

RESUMO

Rapidly developing resistance against different therapeutics is a major stumbling block in the standardization of therapy. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated signaling has emerged as one of the most highly and extensively studied signal transduction cascade that induces apoptosis in cancer cells. Rapidly emerging cutting-edge research has helped us to develop a better understanding of the signaling machinery involved in inducing apoptotic cell death. However, excitingly, cancer cells develop resistance against TRAIL-induced apoptosis through different modes. Loss of cell surface expression of TRAIL receptors and imbalance of stoichiometric ratios of pro- and anti-apoptotic proteins play instrumental roles in rewiring the machinery of cancer cells to develop resistance against TRAIL-based therapeutics. Natural products have shown excellent potential to restore apoptosis in TRAIL-resistant cancer cell lines and in mice xenografted with TRAIL-resistant cancer cells. Significantly refined information has previously been added and continues to enrich the existing pool of knowledge related to the natural-product-mediated upregulation of death receptors, rebalancing of pro- and anti-apoptotic proteins in different cancers. In this mini review, we will set spotlight on the most recently published high-impact research related to underlying mechanisms of TRAIL resistance and how these deregulations can be targeted by natural products to restore TRAIL-mediated apoptosis in different cancers.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Humanos , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
2.
Cell Mol Biol (Noisy-le-grand) ; 64(11): 102-107, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30213297

RESUMO

Piperlongumine is a biologically and pharmacologically active constituent of the plant Piper longum. This compound is gradually gaining attention because of its ability to inhibit/prevent different cancers. Modern era of molecular oncology is incomplete without ground-breaking discoveries made in the field of cell signaling pathways. High-throughput technologies have considerably improved our understanding about wide ranging signal transduction cascades which play crucial role in cancer development and progression. It is exciting to note that piperlongumine has been shown to pleiotropically modulate different oncogenic signaling pathways. We partition this multi-component review into discrete sections and categorically summarize key findings related to excellent ability of piperlongumine to therapeutically target JAK-STAT, NF-kB and PI3K/AKT/mTOR pathways. We also set spotlight on regulation of TRAIL pathway and autophagy by piperlongumine in different cancers. On the basis of the current understanding of piperlongumine, molecular biologists and pharmacologists will develop the next generation of translational studies, which will prove to be helpful in improving the clinical outcome and getting a step closer to personalized medicine.


Assuntos
Antineoplásicos/farmacologia , Dioxolanos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Food Chem Toxicol ; 110: 94-108, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29017835

RESUMO

1,3-Oxazolidine-2-thione derivatives are glucosinolate-related food constituents known to impart (thyreo)toxic properties to some cruciferous vegetables. In this work, 5,5-dimethyl-1,3-oxazolidine-2-thione and (-)-(R)-5-phenyl-1,3-oxazolidine-2-thione, known goitrogens, were isolated from Draba lasiocarpa Rochel (Brassicaceae) and Reseda luteola L. (Resedaceae), respectively, and were fully spectrally characterized. Subsequently, the occurrence of the two 1,3-oxazolidine-2-thiones was verified in six additional taxa out of in total 78 screened Serbian Brassicales taxa. The stereochemistry of 5-phenyl-1,3-oxazolidine-2-thione was inferred from nuclear magnetic resonance experiments with a chiral lanthanide-shift reagent, employed in this work for the first time for this type of compounds. Unexpectedly, during gas chromatography, 5-phenyl-1,3-oxazolidine-2-thione underwent an unreported thermal core isomerization (1,3-oxazolidine-2-thione to 1,3-thiazolidine-2-one). These goitrogenic volatile glucosinolate products were tested for their effect on rat macrophage viability (three assays) and nitric oxide production. It was shown that the compounds displayed different levels of cytotoxicity. All tested compounds caused a significant lactate dehydrogenase leakage, but only (R)-5-phenyl-1,3-oxazolidine-2-thione statistically significantly reduced macrophage mitochondrial activity, whereas the racemic 5-phenyl-1,3-oxazolidine-2-thione and 5,5-dimethyl-1,3-oxazolidine-2-thione had little or no effect. Again only (R)-5-phenyl-1,3-oxazolidine-2-thione exerted nitric oxide production-inhibiting properties, suggesting the higher immunomodulatory potential of this enantiomer compared with its antipode and racemic mixture.


Assuntos
Brassicaceae/química , Fatores Imunológicos/química , Oxazóis/química , Extratos Vegetais/química , Tionas/química , Animais , Cromatografia Gasosa , Humanos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxazóis/isolamento & purificação , Oxazóis/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Estereoisomerismo , Tionas/isolamento & purificação , Tionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA