Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 516(4): 1216-1221, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31296383

RESUMO

There is increasing evidence that the brain resides in a state of criticality. The purpose of the present work is to characterize the dynamics of individual hippocampal CA1 pyramidal cells and to investigate how it is influenced by changes in Kv7.2/7.3 (M-channel) ion channel modulation, which is known to be key in determining the neuronal excitability. We show that the resting activity of CA1 neurons exhibit random dynamics with low information content, while changes in M-channel modulation move the neuronal activity near a phase transition to richer non-trivial dynamics. We interpret these results as the basis upon which the state of self-organized criticality is built.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Masculino , Transição de Fase , Células Piramidais/citologia , Ratos Wistar
2.
Phys Rev E ; 103(4-1): 042111, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005998

RESUMO

In systems with dynamical transitions, criticality is usually defined by the behavior of suitable individual variables of the system. In the case of time series, the usual procedure involves the analysis of the statistical properties of the selected variable as a function of a control parameter in both the time and frequency domains. An interesting question, however, is how to identify criticality when multiple simultaneous signals are required to provide a reliable representation of the system, especially when the signals exhibit different dynamics and do not individually display the characteristic signs of criticality. In that situation, a technique that analyzes the collective behavior of the signals is necessary. In this work we show that the eigenvalues and eigenvectors obtained from principal components analysis (PCA) can be used as a way to identify collective criticality. To do this, we construct a multilayer Ising model comprised of coupled two-dimensional Ising lattices that have distinct critical temperatures when isolated. We apply PCA to the collection of magnetization signals for a range of global temperatures and study the resulting eigenvalues. We find that there exists a single global temperature at which the eigenvalue spectrum follows a power law, and identify this as an indicator of "multicriticality" for the system. We then apply the technique to electroencephalographic recordings of brain activity, as this is a prime example of multiple signals with distinct individual dynamics. The analysis reveals a power-law eigenspectrum, adding further evidence to the brain criticality hypothesis. We also show that the eigenvectors can be used to distinguish the recordings in the resting state from those during a cognitive task, and that there is important information contained in all eigenvectors, not just the first few dominant ones, establishing that PCA has great utility beyond dimensionality reduction.

3.
Front Physiol ; 12: 678507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045977

RESUMO

Within human physiology, systemic interactions couple physiological variables to maintain homeostasis. These interactions change according to health status and are modified by factors such as age and sex. For several physiological processes, sex-based distinctions in normal physiology are present and defined in isolation. However, new methodologies are indispensable to analyze system-wide properties and interactions with the objective of exploring differences between sexes. Here we propose a new method to construct complex inferential networks from a normalization using the clinical criteria for health of physiological variables, and the correlations between anthropometric and blood tests biomarkers of 198 healthy young participants (117 women, 81 men, from 18 to 27 years old). Physiological networks of men have less correlations, displayed higher modularity, higher small-world index, but were more vulnerable to directed attacks, whereas networks of women were more resilient. The networks of both men and women displayed sex-specific connections that are consistent with the literature. Additionally, we carried out a time-series study on heart rate variability (HRV) using Physionet's Fantasia database. Autocorrelation of HRV, variance, and Poincare's plots, as a measure of variability, are statistically significant higher in young men and statistically significant different from young women. These differences are attenuated in older men and women, that have similar HRV distributions. The network approach revealed differences in the association of variables related to glucose homeostasis, nitrogen balance, kidney function, and fat depots. The clusters of physiological variables and their roles within the network remained similar regardless of sex. Both methodologies show a higher number of associations between variables in the physiological system of women, implying redundant mechanisms of control and simultaneously showing that these systems display less variability in time than those of men, constituting a more resilient system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA