Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biomacromolecules ; 23(1): 20-33, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34870412

RESUMO

Although doxorubicin (DOX) is one of the most used chemotherapeutic drugs due to its efficacy against a wide group of cancer types, it presents severe side effects. As such, intensive research is being carried out to find new nanoscale systems that can help to overcome this problem. Polyester dendrimers based on the monomer 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are very promising systems for biomedical applications due to their biodegradability properties. In this study, bis-MPA-based dendrimers were, for the first time, evaluated as DOX delivery vehicles. Generations 4 and 5 of bis-MPA-based dendrimers with hydroxyl groups at the surface were used (B-G4-OH and B-G5-OH), together with dendrimers partially functionalized with amine groups (B-G4-NH2/OH and B-G5-NH2/OH). Partial functionalization was chosen because the main purpose was to compare the effect of different functional groups on dendrimers' drug delivery behavior without compromising cell viability, which is often affected by dendrimers' cationic charge. Results revealed that bis-MPA-based dendrimers were cytocompatible, independently of the chemical groups that were present at their surface. The B-G4-NH2/OH and B-G5-NH2/OH dendrimers were able to retain a higher number of DOX molecules, but the in vitro release of the drug was faster. On the contrary, the hydroxyl-terminated dendrimers exhibited a lower loading capacity but were able to deliver the drug in a more sustained manner. These results were in accordance with the cytotoxicity studies performed in several models of cancer cell lines and human mesenchymal stem cells. Overall, the results confirmed that it is possible to tune the drug delivery properties of bis-MPA-based dendrimers by modifying surface functionalization. Moreover, molecular modeling studies provided insights into the nature of the interactions established between the drug and the bis-MPA-based dendrimers─DOX molecules attach to their surface rather than being physically encapsulated.


Assuntos
Dendrímeros , Cátions/química , Sobrevivência Celular , Dendrímeros/química , Dendrímeros/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Poliésteres/química
2.
Metabolomics ; 17(8): 72, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389918

RESUMO

INTRODUCTION: Globally, breast cancer (BC) is leading at the top of women's diseases and, as a multifactorial disease, there is the need for the development of new approaches to aid clinicians on monitoring BC treatments. In this sense, metabolomic studies have become an essential tool allowing the establishment of interdependency among metabolites in biological samples. OBJECTIVE: The combination of nuclear magnetic resonance (NMR) and gas chromatography-quadrupole mass spectrometry (GC-qMS) based metabolomic analyses of urine and breast tissue samples from BC patients and cancer-free individuals was used. METHODS: Multivariate statistical tools were used in order to obtain a panel of metabolites that could discriminate malignant from healthy status assisting in the diagnostic field. Urine samples (n = 30), cancer tissues (n = 30) were collected from BC patients, cancer-free tissues were resected outside the tumor margin from the same donors (n = 30) while cancer-free urine samples (n = 40) where obtained from healthy subjects and analysed by NMR and GC-qMS methodologies. RESULTS: The orthogonal partial least square discriminant analysis model showed a clear separation between BC patients and cancer-free subjects for both classes of samples. Specifically, for urine samples, the goodness of fit (R2Y) and predictive ability (Q2) was 0.946 and 0.910, respectively, whereas for tissue was 0.888 and 0.813, revealing a good predictable accuracy. The discrimination efficiency and accuracy of tissue and urine metabolites was ascertained by receiver operating characteristic curve analysis that allowed the identification of metabolites with high sensitivity and specificity. The metabolomic pathway analysis identified several dysregulated pathways in BC, including those related with lactate, valine, aspartate and glutamine metabolism. Additionally, correlations between urine and tissue metabolites were investigated and five metabolites (e.g. acetone, 3-hexanone, 4-heptanone, 2-methyl-5-(methylthio)-furan and acetate) were found to be significant using a dual platform approach. CONCLUSION: Overall, this study suggests that an improved metabolic profile combining NMR and GC-qMS may be useful to achieve more insights regarding the mechanisms underlying cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Metabolômica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Pessoa de Meia-Idade , Urina/química
3.
Biomacromolecules ; 22(6): 2436-2450, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34009977

RESUMO

Carbon dots (CDs) and G4-G6 (polyamidoamine)PAMAM-NH2 dendrimers were self-assembled to produce CDs@PAMAM nanohybrids for transfection and bioimaging purposes. CDs were synthesized by the hydrothermal method, using ascorbic acid as a starting precursor and characterized by transmission electron microscopy, UV-Vis, and fluorescence (in solution and solid-state) techniques. CDs were electrostatically combined with PAMAM dendrimers at room temperature, and the UV-Vis, fluorescence, and NMR spectroscopies were used to confirm the self-assembly. When compared to pristine CDs, nanohybrids were more photostable, resisting high acidic and basic pH. Moreover, they were considerably internalized by cells, as assessed by flow cytometry and fluorescence microscopy, and, when excited, displayed multi-color emission easily quantified and visualized. These nanoscale hybrids, coined hybridplexes, can condense pDNA and transfecting cells successfully, particularly the G5 CDs@PAMAM nanohybrids. In summary, CDs prepared in mild and smooth lab conditions, showing good optical properties, were used to prepare elegantly CDs@PAMAM nanohybrids with promising biomedical applications.


Assuntos
Dendrímeros , Carbono , Técnicas de Transferência de Genes , Transfecção
4.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069054

RESUMO

The DACHPtCl2 compound (trans-(R,R)-1,2-diaminocyclohexanedichloroplatinum(II)) is a potent anticancer drug with a broad spectrum of activity and is less toxic than oxaliplatin (trans-l-diaminocyclohexane oxalate platinum II), with which it shares the active metal fragment DACHPt. Nevertheless, due to poor water solubility, its use as a chemotherapeutic drug is limited. Here, DACHPtCl2 was conjugated, in a bidentate form, with half-generation PAMAM dendrimers (G0.5-G3.5) with carboxylate end-groups, and the resulting conjugates were evaluated against various types of cancer cell lines. In this way, we aimed at increasing the solubility and availability at the target site of DACHPt while potentially reducing the adverse side effects. DNA binding assays showed a hyperchromic effect compatible with DNA helix's disruption upon the interaction of the metallodendrimers and/or the released active metallic fragments with DNA. Furthermore, the prepared DACHPt metallodendrimers presented cytotoxicity in a wide set of cancer cell lines used (the relative potency regarding oxaliplatin was in general high) and were not hemotoxic. Importantly, their selectivity for A2780 and CACO-2 cancer cells with respect to non-cancer cells was particularly high. Subsequently, the anticancer drug 5-FU was loaded in a selected metallodendrimer (the G2.5COO(DACHPt)16) to investigate a possible synergistic effect between the two drugs carried by the same dendrimer scaffold and tested for cytotoxicity in A2780cisR and CACO-2 cancer cell lines. This combination resulted in IC50 values much lower than the IC50 for 5-FU but higher than those found for the metallodendrimers without 5-FU. It seems, thus, that the metallic fragment-induced cytotoxicity dominates over the cytotoxicity of 5-FU in the set of considered cell lines.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Fluoruracila/farmacologia , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , DNA/metabolismo , Dendrímeros/síntese química , Liberação Controlada de Fármacos , Fluoruracila/síntese química , Fluoruracila/química , Humanos , Concentração Inibidora 50 , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta , Eletricidade Estática , Termodinâmica
5.
Bioconjug Chem ; 31(3): 907-915, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32096990

RESUMO

Development of versatile nanoplatforms for cancer theranostics remains a hot topic in the area of nanomedicine. We report here a general approach to create polyethylenimine (PEI)-based hybrid nanogels (NGs) incorporated with ultrasmall iron oxide (Fe3O4) nanoparticles (NPs) and doxorubicin for T1-weighted MR imaging-guided chemotherapy of tumors. In this study, PEI NGs were first prepared using an inverse emulsion approach along with Michael addition reaction to cross-link the NGs, modified with citric acid-stabilized ultrasmall Fe3O4 NPs through 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC) coupling, and physically loaded with anticancer drug doxorubicin (DOX). The formed hybrid NGs possess good water dispersibility and colloidal stability, excellent DOX loading efficiency (51.4%), pH-dependent release profile of DOX with an accelerated release rate under acidic pH, and much higher r1 relaxivity (2.29 mM-1 s-1) than free ultrasmall Fe3O4 NPs (1.15 mM-1 s-1). In addition, in contrast to the drug-free NGs that possess good cytocompatibility, the DOX-loaded hybrid NGs display appreciable therapeutic activity and can be taken up by cancer cells in vitro. With these properties, the developed hybrid NGs enabled effective inhibition of tumor growth under the guidance of T1-weighted MR imaging. The developed hybrid NGs may be applied as a versatile nanoplatform for MR imaging-guided chemotherapy of tumors.


Assuntos
Doxorrubicina/química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanogéis/química , Nanopartículas/química , Tamanho da Partícula , Polietilenoimina/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Cinética , Camundongos
6.
Metabolomics ; 15(4): 64, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30997581

RESUMO

INTRODUCTION: Breast cancer (BC) is positioned as the second among all cancers remaining at the top of women´s diseases worldwide followed by colorectum, lung, cervix, and thyroid cancers. The main drawback of most the screening/diagnostic methods is their low sensitivity/specificity and in some cases the invasive procedure required to obtain the samples. OBJECTIVES: On the present investigation, we report a statistical design was to evaluate by central composite design the influence towards the optimization of the most significant variables of solid-phase microextraction (SPME) procedure for the isolation of volatile organic metabolites (VOMs) from urine of BC patients (N = 31) and healthy individuals (CTL; N = 40). The establishment of the urinary volatomic composition, through gas chromatography-mass spectrometry (GC-MS) analysis, can boost the identification of volatile organic metabolites (VOMs) potential BC biomarkers useful to be used together or to complement the current BC diagnostics tools. Better early detection methods are needed to improve the outcomes of patients with BC. METHODS: Several combinations of experiments were considered with a central composite design (CCD) of response surface methodology (RSM) for the urinary volatomic pattern. Three-level three-factor CCD was employed assessing the most important extraction-influencing variables-fiber coating, NaCl amount, extraction time and temperature. The optimal conditions were achieved using a carboxen/polydimethylsiloxane fiber with 15% (w/v) NaCl during 75 min at 50 °C. RESULTS: A total of ten VOMs belonging to sulfur compounds, terpenoids and carbonyl compounds presented the highest contribution towards discrimination of BC patients from CTL (variable importance in projection (VIP) > 1, p < 0.05). The discrimination efficiency and accuracy of urinary metabolites was ascertained by receiver operating characteristic (ROC) curve analysis that allowed the identification of some metabolites with highest sensitivity and specificity to discriminate the groups. CONCLUSIONS: The results obtained with this approach suggest the possibility to identify endogenous metabolites as a platform to discovery potential BC biomarkers and paves a way to explore the related metabolomic pathways in order to improve BC diagnostic tools.


Assuntos
Neoplasias da Mama/diagnóstico , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/urina , Neoplasias da Mama/metabolismo , Neoplasias da Mama/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos , Pessoa de Meia-Idade , Curva ROC , Compostos Orgânicos Voláteis/urina
7.
Analyst ; 144(14): 4153-4161, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31144689

RESUMO

Breast cancer (BC), ranked as the fifth amongst all cancers, remains at the top of women's cancers worldwide followed by colorectal, lung, cervix, and stomach cancers. The main handicap of most of the screening/diagnostic methods is based on their low sensitivity and specificity and the invasive behavior of most sampling procedures. The aim of this study was to establish the volatomic pattern of BC and cancer-free (CF) tissues (n = 30) from the same patients, as a powerful tool to identify a set of volatile organic metabolite (VOM) potential BC biomarkers which might be used together or complement with the traditional BC diagnostics strategies, through the integration of chromatographic data, obtained by solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME/GC-qMS), with chemometric tools. A total of four metabolites: limonene, decanoic acid, acetic acid and furfural presented the highest contribution towards discrimination of BC and CF tissues (VIP > 1, p < 0.05). The discrimination efficiency and accuracy of BC tissue metabolites was ascertained by ROC curve analysis that allowed the identification of some metabolites with high sensitivity and specificity. The results obtained with this approach suggest the possibility of identifying endogenous metabolites as a platform to find potential BC biomarkers and pave the way to investigate the related metabolomic pathways in order to improve BC diagnostic tools. Moreover, deeper investigations could unravel novel mechanistic insights into the disease pathophysiology.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Compostos Orgânicos Voláteis/análise , Ácido Acético/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácidos Decanoicos/análise , Feminino , Furaldeído/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limoneno/análise , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Curva ROC
8.
Chem Soc Rev ; 47(2): 514-532, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29154385

RESUMO

For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/patologia
9.
Langmuir ; 34(41): 12428-12435, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30251859

RESUMO

Novel theranostic nanocarriers exhibit a desirable potential to treat diseases based on their ability to achieve targeted therapy while allowing for real-time imaging of the disease site. Development of such theranostic platforms is still quite challenging. Herein, we present the construction of multifunctional dendrimer-based theranostic nanosystem to achieve cancer cell chemotherapy and computed tomography (CT) imaging with targeting specificity. Doxorubicin (DOX), a model anticancer drug, was first covalently linked onto the partially acetylated poly(amidoamine) dendrimers of generation 5 (G5) prefunctionalized with folic acid (FA) through acid-sensitive cis-aconityl linkage to form G5·NHAc-FA-DOX conjugates, which were then entrapped with gold (Au) nanoparticles (NPs) to create dendrimer-entrapped Au NPs (Au DENPs). We demonstrate that the prepared DOX-Au DENPs possess an Au core size of 2.8 nm, have 9.0 DOX moieties conjugated onto each dendrimer, and are colloid stable under different conditions. The formed DOX-Au DENPs exhibit a pH-responsive release profile of DOX because of the cis-aconityl linkage, having a faster DOX release rate under a slightly acidic pH condition than under a physiological pH. Importantly, because of the coexistence of targeting ligand FA and Au core NPs as a CT imaging agent, the multifunctional DOX-loaded Au DENPs afford specific chemotherapy and CT imaging of FA receptor-overexpressing cancer cells. The constructed DOX-conjugated Au DENPs hold a promising potential to be utilized for simultaneous chemotherapy and CT imaging of various types of cancer cells.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Dendrímeros/síntese química , Doxorrubicina/química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X/métodos
10.
Nanomedicine ; 14(7): 2407-2420, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552649

RESUMO

Laponite® is a synthetic smectite clay that already has many important technological applications, which go beyond the conventional uses of clays in pharmaceutics and cosmetics. In biomedical applications, particularly in nanomedicine, this material holds great potential. Laponite® is a 2-dimensional (2D) nanomaterial composed of disk-shaped nanoscale crystals that have a high aspect ratio. These disks can strongly interact with many types of chemical entities (from small molecules or ions, to natural or synthetic polymers, to different inorganic nanoparticles) and are also easily functionalized and readily degraded in the physiological environment giving rise to non-toxic and even bioactive products. This review will highlight the potential of Laponite® as a nanomaterial in the fields of drug delivery, bioimaging, tissue engineering and regenerative medicine. New concepts, as well as novel innovative materials that stand out from the usual ones due to the unique properties of Laponite®, will also be presented and discussed.


Assuntos
Pesquisa Biomédica , Nanomedicina , Nanopartículas/administração & dosagem , Medicina Regenerativa , Silicatos/química , Engenharia Tecidual , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química
11.
Molecules ; 23(6)2018 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-29914219

RESUMO

Here and for the first time, we show that the organometallic compound [Ru(η5-C5H5)(PPh3)2Cl] (RuCp) has potential to be used as a metallodrug in anticancer therapy, and further present a new approach for the cellular delivery of the [Ru(η5-C5H5)(PPh3)2]⁺ fragment via coordination on the periphery of low-generation poly(alkylidenimine) dendrimers through nitrile terminal groups. Importantly, both the RuCp and the dendrimers functionalized with [Ru(η5-C5H5)(PPh3)2]⁺ fragments present remarkable toxicity towards a wide set of cancer cells (Caco-2, MCF-7, CAL-72, and A2780 cells), including cisplatin-resistant human ovarian carcinoma cell lines (A2780cisR cells). Also, RuCp and the prepared metallodendrimers are active against human mesenchymal stem cells (hMSCs), which are often found in the tumor microenvironment where they seem to play a role in tumor progression and drug resistance.


Assuntos
Antineoplásicos/síntese química , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Compostos Organometálicos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Dendrímeros , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Células MCF-7 , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia
12.
Bioconjug Chem ; 26(7): 1182-97, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25826129

RESUMO

Interest in dendrimer-based nanomedicines has been growing recently, as it is possible to precisely manipulate the molecular weight, chemical composition, and surface functionality of dendrimers, tuning their properties according to the desired biomedical application. However, one important concern about dendrimer-based therapeutics remains-the nondegradability under physiological conditions of the most commonly used dendrimers. Therefore, biodegradable dendrimers represent an attractive class of nanomaterials, since they present advantages over conventional nondegradable dendrimers regarding the release of the loaded molecules and the prevention of bioaccumulation of synthetic materials and subsequent cytotoxicity. Here, we present an overview of the state-of-the-art of the design of biodegradable dendritic structures, with particular focus on the hurdles regarding the use of these as vectors of drugs and nucleic acids, as well as macromolecular contrast agents.


Assuntos
Materiais Biocompatíveis/química , Meios de Contraste/química , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Imageamento por Ressonância Magnética , Nanomedicina Teranóstica/métodos , Animais , Materiais Biocompatíveis/metabolismo , Meios de Contraste/metabolismo , Dendrímeros/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Nanoestruturas/química , Ácidos Nucleicos/administração & dosagem , Preparações Farmacêuticas/administração & dosagem
13.
Biomacromolecules ; 15(2): 492-9, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24432789

RESUMO

Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Fluorescência , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Células NIH 3T3 , Nanogéis , Relação Estrutura-Atividade
14.
Mater Horiz ; 11(1): 12-36, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37818593

RESUMO

With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.


Assuntos
Qualidade de Vida , Titânio , Próteses e Implantes , Regeneração Óssea , Fixadores Internos
15.
Biomater Sci ; 12(6): 1346-1356, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362780

RESUMO

Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.


Assuntos
Dendrímeros , Glioma , Humanos , Barreira Hematoencefálica/metabolismo , Dendrímeros/química , Medicina de Precisão , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/metabolismo , Sistemas de Liberação de Medicamentos/métodos
16.
Nat Prod Res ; : 1-18, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586940

RESUMO

Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 µM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 µM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 µM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.

17.
Biomacromolecules ; 14(9): 3140-6, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23927460

RESUMO

Although doxorubicin (Dox) has been widely used in the treatment of different types of cancer, its insufficient cellular uptake and intracellular release is still a limitation. Herein, we report an easy process for the preparation of redox-sensitive nanogels that were shown to be highly efficient in the intracellular delivery of Dox. The nanogels (AG/Cys) were obtained through in situ cross-linking of alginate (AG) using cystamine (Cys) as a cross-linker via a miniemulsion method. Dox was loaded into the AG/Cys nanogels by simply mixing it in aqueous solution with the nanogels, that is, by the establishment of electrostatic interactions between the anionic AG and the cationic Dox. The results demonstrated that the AG/Cys nanogels are cytocompatible, have a high drug encapsulation efficiency (95.2 ± 4.7%), show an in vitro accelerated release of Dox in conditions that mimic the intracellular reductive conditions, and can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in higher Dox intracellular accumulation and a remarkable cell death extension when compared with free Dox. The developed nanogels can be used as a tool to overcome the problem of Dox resistance in anticancer treatments and possibly be used for the delivery of other cationic drugs in applications beyond cancer.


Assuntos
Alginatos/química , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Nanoestruturas/química , Absorção , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Cinética , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Chem Soc Rev ; 41(6): 2193-221, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22116474

RESUMO

Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).


Assuntos
Tecnologia Biomédica , Hidrogéis/química , Hidrogéis/metabolismo , Sistemas de Liberação de Medicamentos , Géis/química , Géis/metabolismo
19.
Pharmaceutics ; 15(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840012

RESUMO

Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA