Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Cell Biol ; 15: 35, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25441447

RESUMO

BACKGROUND: Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to quantitatively interpret SPR images. Spatial resolution is complicated by the asymmetric propagation length of surface plasmons in the x and y dimensions leading to image degradation in one direction. Inferring the distance of intracellular organelles and other subcellular features from the interface by SPRI is complicated by uncertainties regarding the detection of the evanescent wave decay into cells. This study provides an experimental basis for characterizing the resolution of an SPR imaging system in the lateral and distal dimensions and demonstrates a novel approach for resolving sub-micrometer cellular structures by SPRI. The SPRI resolution here is distinct in its ability to visualize subcellular structures that are in proximity to a surface, which is comparable with that of total internal reflection fluorescence (TIRF) microscopy but has the advantage of no fluorescent labels. RESULTS: An SPR imaging system was designed that uses a high numerical aperture objective lens to image cells and a digital light projector to pattern the angle of the incident excitation on the sample. Cellular components such as focal adhesions, nucleus, and cellular secretions are visualized. The point spread function of polymeric nanoparticle beads indicates near-diffraction limited spatial resolution. To characterize the z-axis response, we used micrometer scale polymeric beads with a refractive index similar to cells as reference materials to determine the detection limit of the SPR field as a function of distance from the substrate. Multi-wavelength measurements of these microspheres show that it is possible to tailor the effective depth of penetration of the evanescent wave into the cellular environment. CONCLUSION: We describe how the use of patterned incident light provides SPRI at high spatial resolution, and we characterize a finite limit of detection for penetration depth. We demonstrate the application of a novel technique that allows unprecedented subcellular detail for SPRI, and enables a quantitative interpretation of SPRI for subcellular imaging.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Contraste de Fase/instrumentação , Análise de Célula Única/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Linhagem Celular , Desenho de Equipamento , Humanos , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Análise de Célula Única/métodos , Ressonância de Plasmônio de Superfície/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38846932

RESUMO

Using dendron chemistry, we developed stability enhanced, carboxylate surface modified (negatively charged dendron) AuNPs (Au-NCD). Since the carboxylate surface of Au-NCD is optimal for complexation with cisplatin (Pt) moieties, we further synthesized Pt loaded Au-NCD (Au-NCD/Pt) to serve as potential therapeutic anticancer agents. The size distribution, zeta potential and surface plasmon resonance of both Au-NCDs and Au-NCD/Pt were characterized via dynamic light scattering, scanning transmission electron microscopy and ultraviolet-visible spectrophotometry. Surface chemistry, Pt uptake, and Pt release were evaluated using inductively coupled plasma-mass spectrometry and X-ray photoelectron spectroscopy. Colloidal stability in physiological media over a wide pH range (1 to 13) and shelf-life stability (up to 6 months) were also assessed. Finally, the cytotoxicity of both Au-NCD and Au-NCD/Pt to Chinese hamster ovary cells (CHO K1; as a normal cell line) and to human lung epithelial cells (A549; as a cancer cell line) were evaluated. The results of these physicochemical and functional cytotoxicity studies with Au-NCD/Pt demonstrated that the particles exhibited superlative colloidal stability, cisplatin uptake and in vitro anticancer activity despite low amounts of Pt release from the conjugate.

3.
Nanotoxicology ; 17(1): 94-115, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36919473

RESUMO

Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-Xenopus (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.


Assuntos
Nanopartículas Metálicas , Teratogênese , Animais , Ouro/toxicidade , Polietilenoimina/toxicidade , Polietilenoglicóis/toxicidade , Xenopus laevis , Nanopartículas Metálicas/toxicidade , Embrião não Mamífero , Teratogênicos/toxicidade , Mamíferos
4.
J Nucleic Acids ; 2022: 9188636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164440

RESUMO

Application of DNA damage diagnostic tests is rapidly growing, in particular for ovarian, prostate, and skin cancers; environmental monitoring; chronic and degenerative diseases; and male infertility. Such tests suffer from significant variability among different laboratories due the lack of standardization, experimental validation, and differences in data interpretation. Reference methods and materials for quantitative measurement of UVA-induced DNA damage in mammalian cells are frequently needed. In this study, we examined the use of the single-cell gel electrophoresis (comet) assay to assess the UVA-induced DNA damage in surface-attached Chinese hamster ovary (CHO) cells treated with a photosensitizer as a candidate cellular oxidative damage reference material. We found that the comet images became diffused and the viability of the cells decreased substantially (>20%) as the UVA dose and benzo [a] pyrene (BaP) concentration exceeded 6.3 J/cm2 and 10-6 mol/L BaP. Maintaining the conditions of exposure within this range can improve DNA damage measurement fidelity, particularly if used as a quantitative reference method and to produce materials considered as an in vitro standard for the comet assay.

5.
Cytometry A ; 79(3): 192-202, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22045641

RESUMO

The extracellular matrix protein tenascin-C plays a critical role in development, wound healing, and cancer progression, but how it is controlled and how it exerts its physiological responses remain unclear. By quantifying the behavior of live cells with phase contrast and fluorescence microscopy, the dynamic regulation of TN-C promoter activity is examined. We employ an NIH 3T3 cell line stably transfected with the TN-C promoter ligated to the gene sequence for destabilized green fluorescent protein (GFP). Fully automated image analysis routines, validated by comparison with data derived from manual segmentation and tracking of single cells, are used to quantify changes in the cellular GFP in hundreds of individual cells throughout their cell cycle during live cell imaging experiments lasting 62 h. We find that individual cells vary substantially in their expression patterns over the cell cycle, but that on average TN-C promoter activity increases during the last 40% of the cell cycle. We also find that the increase in promoter activity is proportional to the activity earlier in the cell cycle. This work illustrates the application of live cell microscopy and automated image analysis of a promoter-driven GFP reporter cell line to identify subtle gene regulatory mechanisms that are difficult to uncover using population averaged measurements.


Assuntos
Ciclo Celular/genética , Processamento de Imagem Assistida por Computador/métodos , Regiões Promotoras Genéticas , Tenascina/genética , Animais , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Células NIH 3T3 , Tenascina/metabolismo
6.
Cytometry A ; 77(9): 895-903, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20629195

RESUMO

Spatially resolved details of the interactions of cells with a fibronectin modified surface were examined using surface plasmon resonance imaging (SPRI). SPRI is a label-free technique that is based on the spatial measurement of interfacial refractive index. SPRI is sensitive to short range interactions between cells and their substratum. The high contrast in SPR signal between cell edges and substratum facilitates identification of cell edges and segmentation of cell areas. With this novel technique, we demonstrate visualization of cell-substratum interactions, and how cell-substratum interactions change over time as cells spread, migrate, and undergo membrane ruffling.


Assuntos
Fenômenos Fisiológicos Celulares , Matriz Extracelular/fisiologia , Ressonância de Plasmônio de Superfície/métodos , Animais , Adesão Celular , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Matriz Extracelular/química , Fibronectinas/química , Microscopia/instrumentação , Microscopia/métodos , Músculo Liso Vascular/química , Músculo Liso Vascular/citologia , Ratos , Refratometria/instrumentação , Refratometria/métodos , Ressonância de Plasmônio de Superfície/instrumentação
7.
J Nanobiotechnology ; 8: 13, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550705

RESUMO

BACKGROUND: The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs) distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. RESULTS: We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC), we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM) images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. CONCLUSIONS: The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

8.
J Nucleic Acids ; 2020: 8810105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802493

RESUMO

To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.

9.
J Nucleic Acids ; 2020: 2928104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411438

RESUMO

Reference materials are needed to quantify the level of DNA damage in cells, to assess sources of measurement variability and to compare results from different laboratories. The comet assay (single cell gel electrophoresis) is a widely used method to determine DNA damage in the form of strand breaks. Here we examine the use of electrochemical oxidation to produce DNA damage in cultured mammalian cells and quantify its percentage using the comet assay. Chinese hamster ovary (CHO) cells were grown on an indium tin oxide electrode surface and exposed 12 h to electrochemical potentials ranging from 0.5 V to 1.5 V (vs Ag/AgCl). The resulting cells were harvested and analyzed by comet and a cell viability assay. We observed a linear increase in the percentage (DNA in tail) of strand breaks along with a loss of cell viability with increasing oxidation potential value. The results indicate that electrochemically induced DNA damage can be produced in mammalian cells under well-controlled conditions and could be considered in making a cellular reference material for the comet assay.

10.
BMC Cell Biol ; 10: 16, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19245706

RESUMO

BACKGROUND: A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the requirement of transfected cells and modified biological molecules, and if collected nondestructively, would allow long term observation and analysis of live cells. RESULTS: Using surface plasmon resonance imaging (SPRI), the deposition of protein by vascular smooth muscle cells (vSMC) cultured on fibronectin was quantified as a function of cell density and distance from the cell periphery. We observed that as much as 120 ng/cm2 of protein was deposited by cells in 24 h. CONCLUSION: SPRI is a real-time, low-light-level, label-free imaging technique that allows the simultaneous observation and quantification of protein layers and cellular features. This technique is compatible with live cells such that it is possible to monitor cellular modifications to the extracellular matrix in real-time.


Assuntos
Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Animais , Linhagem Celular , Células/ultraestrutura , Cicloeximida/farmacologia , Fibronectinas/ultraestrutura , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Ratos , Ressonância de Plasmônio de Superfície/instrumentação
11.
Anal Chem ; 81(22): 9239-46, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19860390

RESUMO

Oxygen tension in mammalian cell culture can profoundly affect cellular differentiation, viability, and proliferation. However, precise measurement of dissolved oxygen in real time remains difficult. We report a new noninvasive sensor that can accurately measure oxygen concentration during cell culture while being compatible with live-cell imaging techniques such as fluorescence and phase contrast microscopy. The sensor is prepared by integrating the porphyrin dye, Pt(II) meso-tetrakis(pentafluorophenyl)porphine (PtTFPP) into polydimethylsiloxane (PDMS) thin films. Response of the sensor in the presence of oxygen can be characterized by the linear Stern-Volmer relationship with high sensitivity (K(SV) = 584 +/- 71 atm(-1)). A multilayer sensor design, created by sandwiching the PtTFPP-PDMS with a layer of Teflon AF followed by a second PDMS layer, effectively mitigates against dye cytotoxicity while providing a substrate for cell attachment. Using this sensor, changes in oxygen tension could be monitored in real-time as attached cells proliferated. The oxygen tension was found to decrease due to oxygen consumption by the cells, and the data could be analyzed using Fick's law to obtain the per-cell oxygen consumption rate. This sensor is likely to enable new studies on the effects of dissolved oxygen on cellular behavior.


Assuntos
Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos/química , Oxigênio/análise , Porfirinas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Células NIH 3T3
12.
Clin Chem ; 55(7): 1307-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19443566

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is an important biomarker whose status plays a pivotal role in therapeutic decision-making for breast cancer patients and in determining their clinical outcomes. Ensuring the accuracy and reproducibility of HER2 assays by immunohistochemistry (IHC) and by fluorescence in situ hybridization (FISH) requires a reliable standard for monitoring assay sensitivity and specificity, and for assessing methodologic variation. A prior NIST workshop addressed this need by reaching a consensus to create cell lines as reference materials for HER2 testing. METHODS: Breast carcinoma cell lines SK-BR-3 and MCF-7 were characterized quantitatively by IHC with chicken anti-HER2 IgY antibody and by FISH with biotinylated bacterial artificial chromosome DNA probes; both assays used quantum dots as detectors. Formalin-fixed and paraffin-embedded (FFPE) cell blocks were prepared and tested for suitability as candidate reference materials by IHC and FISH with commercially available reagents. IHC and FISH results were also compared with those obtained by laser-scanning cytometry and real-time PCR, respectively. RESULTS: MCF-7 cells had typical numbers of gene copies and very low production of HER2 protein, whereas SK-BR-3 cells contained approximately 10-fold more copies of the gene and exhibited approximately 15-fold higher amounts of HER2 protein than MCF-7 cells. FFPE SK-BR-3 cells showed results similar to those for fresh SK-BR-3 cells. CONCLUSIONS: SK-BR-3 and MCF-7 are suitable as candidate reference materials in QC of HER2 testing. Coupled with the associated assay platforms, they provide valuable controls for quantitative measurement of HER2 amplification and production in breast cancer samples, irrespective of the antibody/probe or detector used.


Assuntos
Neoplasias da Mama/genética , Amplificação de Genes , Genes erbB-2 , Controle de Qualidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente
13.
J Theor Biol ; 257(1): 124-30, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19068221

RESUMO

A population of cells in culture displays a range of phenotypic responses even when those cells are derived from a single cell and are exposed to a homogeneous environment. Phenotypic variability can have a number of sources including the variable rates at which individual cells within the population grow and divide. We have examined how such variations contribute to population responses by measuring cell volumes within genetically identical populations of cells where individual members of the population are continuously growing and dividing, and we have derived a function describing the stationary distribution of cell volumes that arises from these dynamics. The model includes stochastic parameters for the variability in cell cycle times and growth rates for individual cells in a proliferating cell line. We used the model to analyze the volume distributions obtained for two different cell lines and one cell line in the absence and presence of aphidicolin, a DNA polymerase inhibitor. The derivation and application of the model allows one to relate the stationary population distribution of cell volumes to extrinsic biological noise present in growing and dividing cell cultures.


Assuntos
Tamanho Celular , Modelos Biológicos , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Fenótipo , Processos Estocásticos
14.
DNA Repair (Amst) ; 75: 48-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30743082

RESUMO

Poly(ADP ribose) polymerase 1 (PARP1) is a multifunctional DNA repair protein of the base excision repair pathway and plays a major role in the repair of DNA strand breaks and in replication and transcriptional regulation among other functions. Mounting evidence points to the predictive and prognostic value of PARP1 expression in human cancers. Thus, PARP1 has become an important target in cancer therapy, leading to the development of inhibitors as anticancer drugs. In the past, PARP1 expression levels in tissue samples have generally been estimated by indirect and semi-quantitative immunohistochemical methods. Accurate measurement of PARP1 in normal tissues and malignant tumors of patients will be essential for evaluating PARP1 as a predictive and prognostic biomarker in cancer and other diseases, and for the development and use of its inhibitors in cancer therapy. In this work, we present an approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify PARP1 in human tissues and cultured cells. We identified and quantified PARP1 in human normal ovarian tissues and malignant ovarian tumors, and in three pairs of human cell lines, each pair consisting of a normal cell line and its cancerous counterpart. Significantly greater expression of PARP1 was observed in malignant ovarian tissues than in normal ovarian tissues. In the case of one pair of cell lines, the cancerous cell line also exhibited greater expression of PARP1 than in normal cell line. We also show the simultaneous measurement of PARP1 and apurinic/apyrimidinic endonuclease 1 (APE1) in a given protein extract. The approach presented in this work is expected to contribute to the accurate quantitative assessment of PARP1 levels in basic research and clinical studies.


Assuntos
Cromatografia Líquida , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espectrometria de Massas em Tandem , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Feminino , Humanos , Células MCF-7 , Ovário/metabolismo
15.
Electrophoresis ; 29(24): 5047-54, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19130589

RESUMO

Transparent indium tin oxide microelectrodes were fabricated and used to immobilize suspended NIH 3T3 fibroblast cells by positive dielectrophoresis. The indium tin oxide electrodes facilitated microscopic observation of immobilized cells compared with opaque metallized electrodes. Dielectrophoresis was used to capture arrays of individual cells and form small cell clusters within a microfluidic network. The extent of cellular immobilization (no-cell, single-cell, or multiple-cell capture) was correlated with the applied voltage and inversely with the flow velocity. Specific conditions yielding predominantly single-cell capture were identified. The viability of immobilized cells was confirmed using fluorescence microscopy.


Assuntos
Eletroforese em Microchip/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Compostos de Estanho/química , Animais , Fracionamento Celular , Eletroforese em Microchip/métodos , Camundongos , Microeletrodos , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência , Células NIH 3T3
16.
Artigo em Inglês | MEDLINE | ID: mdl-29755164

RESUMO

Surface plasmon resonance microscopy (SPRM) is a powerful label-free imaging technique with spatial resolution approaching the optical diffraction limit. The high sensitivity of SPRM to small changes in index of refraction at an interface allows imaging of dynamic protein structures within a cell. Visualization of subcellular features, such as focal adhesions (FAs), can be performed on live cells using a high numerical aperture objective lens with a digital light projector to precisely position the incident angle of the excitation light. Within the cell-substrate region of the SPRM image, punctate regions of high contrast are putatively identified as the cellular FAs. Optical parameter analysis is achieved by application of the Fresnel model to the SPRM data and resulting refractive index measurements are used to calculate protein density and mass. FAs are known to be regions of high protein density that reside at the cell-substratum interface. Comparing SPRM with fluorescence images of antibody stained for vinculin, a component in FAs, reveals similar measurements of FA size. In addition, a positive correlation between FA size and protein density is revealed by SPRM. Comparing SPRM images for two cell types reveals a distinct difference in the protein density and mass of their respective FAs. Application of SPRM to quantify mass can greatly aid monitoring basic processes that control FA mass and growth and contribute to accurate models that describe cell-extracellular interactions.

17.
Biomaterials ; 28(4): 576-85, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17049596

RESUMO

In this study, we used well-defined, homogeneous, gradient and patterned substrates to explore the effects of surface chemistry on the supramolecular structure of adsorbed type I collagen. Type I collagen (320microg/mL) was allowed to adsorb onto self-assembled CH(3)-, COOH-, NH(2)- and OH-terminated alkylthiolate monolayers at 37 degrees C. Atomic force microscopy, ellipsometry and phase microscopy indicated that large supramolecular collagen fibril structures (approximately 200nm in diameter, several microns long) assembled only at the hydrophobic CH(3)-terminated surfaces. By varying the surface energy using a mixture of OH- and CH(3)-terminated thiols during monolayer formation, we found that large fibril assembly occurred at surfaces with a water contact angle above 83 degrees , but not on surfaces with a water contact angle below 63 degrees . Examining a surface with a linear hydrophobicity gradient revealed that the assembly of large collagen fibrils requires a hydrophobic surface with a water contact angle of at least 78 degrees . Collagen fibril density increased over a narrow range of surface energy and reached near-maximum density on surfaces with a water contact angle of 87 degrees . These studies confirm that the supramolecular structure of adsorbed collagen is highly dependent on the underlying substrate surface chemistry. We can take advantage of this dependency to pattern areas of fibrillar and non-fibrillar collagen on a single surface. Morphology studies with vascular smooth muscle cells indicated that only collagen films formed on hydrophobic substrates mimicked the biological properties of fibrillar collagen gels.


Assuntos
Colágenos Fibrilares/química , Adsorção , Animais , Forma Celular , Células Cultivadas , Colágenos Fibrilares/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Músculo Liso Vascular/citologia , Ratos , Silanos/química , Propriedades de Superfície
18.
Methods Mol Biol ; 356: 95-107, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16988397

RESUMO

In this chapter, we describe the preparation of thin films of collagen that can serve as reference materials for assuring reproducible and predictable cell responses. Subtle differences in the molecular-scale characteristics of extracellular matrix proteins, including the supramolecular structure of type 1 collagen, can have tremendous influences on cell state and cell-signaling pathways; therefore the careful control and analysis of the culture surface is critical to assure a relevant and consistent response in cell-based assays. We also describe how cell-phenotypic parameters such as morphology, proliferation, and green fluorescent protein expression can be unambiguously quantified in adherent cells by automated fluorescence microscopy or high content screening. Careful consideration of protocols, and the use of fluorescent reference materials, are essential to assure day-to-day and instrument-to-instrument interoperability. The ability to collect quantitative data on large numbers of cells in homogeneous matrix environments allows assessment of the range of phenotypes that are reproducibly expressed in clonal cell populations. The inherent distribution of responses in a cell population will determine how many cells must be measured to reach an accurate determination of cellular response.


Assuntos
Biologia/métodos , Fenômenos Fisiológicos Celulares , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Ratos , Reprodutibilidade dos Testes , Coloração e Rotulagem , Fixação de Tecidos
19.
DNA Repair (Amst) ; 33: 101-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202347

RESUMO

MTH1 protein sanitizes the nucleotide pool so that oxidized 2'-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length (15)N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and (15)N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies.


Assuntos
Neoplasias da Mama/metabolismo , Cromatografia Líquida/métodos , Enzimas Reparadoras do DNA/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/química , Feminino , Humanos , Hidrólise , Dados de Sequência Molecular , Isótopos de Nitrogênio , Peptídeos/metabolismo , Monoéster Fosfórico Hidrolases/química , Tripsina/metabolismo
20.
J Biomed Mater Res A ; 66(3): 483-90, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12918030

RESUMO

We report a novel combinatorial methodology for characterizing the effects of polymer surface features on cell function. Libraries containing hundreds to thousands of distinct chemistries, microstructures, and roughnesses are prepared using composition spread and temperature gradient techniques. The method enables orders of magnitude increases in discovery rate, decreases variance, and allows for the first time high-throughput assays of cell response to physical and chemical surface features. The technique overcomes complex variable spaces that limit development of biomaterial surfaces for control of cell function. This report demonstrates these advantages by investigating the sensitivity of osteoblasts to the chemistry, microstructure, and roughness of poly(D,L-lactide) and poly(epsilon-caprolactone) blends. In particular, we use the phenomenon of heat-induced phase separation in these polymer mixtures to generate libraries with diverse surface features, followed by culture of UMR-106 and MC3T3-E1 osteoblasts on the libraries. Surface features produced at a specific composition and process temperature range were discovered to enhance dramatically alkaline phosphatase expression in both cell lines, not previously observed for osteoblasts on polymer blends.


Assuntos
Osteoblastos/citologia , Polímeros/química , Células 3T3 , Animais , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA