Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Discov Oncol ; 15(1): 348, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134820

RESUMO

This review explores the intricate roles of metal ions-iron, copper, zinc, and selenium-in glioma pathogenesis and immune evasion. Dysregulated metal ion metabolism significantly contributes to glioma progression by inducing oxidative stress, promoting angiogenesis, and modulating immune cell functions. Iron accumulation enhances oxidative DNA damage, copper activates hypoxia-inducible factors to stimulate angiogenesis, zinc influences cell proliferation and apoptosis, and selenium modulates the tumor microenvironment through its antioxidant properties. These metal ions also facilitate immune escape by upregulating immune checkpoints and secreting immunosuppressive cytokines. Targeting metal ion pathways with therapeutic strategies such as chelating agents and metalloproteinase inhibitors, particularly in combination with conventional treatments like chemotherapy and immunotherapy, shows promise in improving treatment efficacy and overcoming resistance. Future research should leverage advanced bioinformatics and integrative methodologies to deepen the understanding of metal ion-immune interactions, ultimately identifying novel biomarkers and therapeutic targets to enhance glioma management and patient outcomes.

2.
J Inflamm Res ; 17: 6743-6764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345892

RESUMO

Purpose: Cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression and the development of resistance to therapies across a range of malignancies, notably breast cancer. This study aims to elucidate the specific role and prognostic relevance of CALU across multiple cancer types. Patients and Methods: The association between CALU expression and prognosis, along with clinical characteristics in BRCA, HNSC, KIRP, LGG, and LIHC, was analyzed using data from the TCGA, GTEx, and GEO databases. Transcriptomic analysis of TCGA BRCA project data provided insights into the interaction between CALU and epithelial-mesenchymal transition (EMT) marker genes. Using TIMER and TISCH databases, the correlation between CALU expression and tumor microenvironment infiltration was assessed, alongside an evaluation of CALU expression across various cell types. Furthermore, CALU's influence on TNBC BRCA cell lines was explored, and its expression in tumor tissues was confirmed through immunohistochemical analysis of clinical samples. Results: This study revealed a consistent upregulation of CALU across several tumor types, including BRCA, KIRP, LIHC, HNSC, and LGG, with elevated CALU expression being associated with unfavorable prognoses. CALU expression was particularly enhanced in clinical contexts linked to poor outcomes. Genomic analysis identified copy number alterations as the principal factor driving CALU overexpression. Additionally, a positive correlation between CALU expression and CAF infiltration was observed, along with its involvement in the EMT process in both CAFs and malignant cells. In vitro experiments demonstrated that CALU is highly expressed in TNBC-BRCA cell lines, and knockdown of CALU effectively reversed EMT progression and inhibited cellular migration. Immunohistochemical analysis of clinical samples corroborated the elevated expression of CALU in tumors, along with alterations in EMT markers. Conclusion: This comprehensive pan-cancer analysis underscores CALU's critical role in modulating the tumor microenvironment and facilitating cell migration via the EMT pathway, identifying it as a potential therapeutic target.

3.
Cell Prolif ; : e13587, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084819

RESUMO

The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.

4.
Genomics Proteomics Bioinformatics ; 21(2): 414-426, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35940520

RESUMO

Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.


Assuntos
Biologia Computacional , Mutação de Sentido Incorreto , Humanos , Virulência , Genômica , Frequência do Gene
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA