Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16184-16193, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814893

RESUMO

Coupling molecules to a quantized radiation field inside an optical cavity has shown great promise to modify chemical reactivity. In this work, we show that the ground-state selectivity of the electrophilic bromination of nitrobenzene can be fundamentally changed by strongly coupling the reaction to the cavity, generating ortho- or para-substituted products instead of the meta product. Importantly, these are products that are not obtained from the same reaction outside the cavity. A recently developed ab initio approach was used to theoretically compute the relative energies of the cationic Wheland intermediates, which indicate the kinetically preferred bromination site for all products. Performing an analysis of the ground-state electron density for the Wheland intermediates inside and outside the cavity, we demonstrate how strong coupling induces reorganization of the molecular charge distribution, which in turn leads to different bromination sites directly dependent on the cavity conditions. Overall, the results presented here can be used to understand cavity induced changes to ground-state chemical reactivity from a mechanistic perspective as well as to directly connect frontier theoretical simulations to state-of-the-art, but realistic, experimental cavity conditions.

2.
Inorg Chem ; 61(27): 10477-10485, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766905

RESUMO

Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several novel complexes were isolated and fully characterized, including iron-vinyl and iron-boryl species, which represent likely intermediates in the catalytic hydroboration pathway. In addition, the products of alkyne insertion into the Fe-B bond have been isolated and structurally characterized. Mechanistic studies of the hydroboration reaction favor a pathway involving an active iron-hydride species, [FeH(tBuPNP)], which readily inserts alkyne and undergoes subsequent reaction with hydroborane to generate product. The iron-boryl species, [Fe(BR2)(tBuPNP)] (R2 = pin or cat), was found to be chemically competent, although its use in catalysis entailed an induction period whereby the iron-hydride species was generated. Stoichiometric reactions and kinetic experiments were performed to paint a fuller picture of the mechanism of alkyne hydroboration, including pathways for catalyst deactivation and the influence of substrate bulk on catalytic efficacy.


Assuntos
Alcinos , Ferro , Alcinos/química , Catálise , Ferro/química , Ligantes , Pirróis
3.
Chem Soc Rev ; 49(12): 4070-4134, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32420562

RESUMO

Sulfur-based ligands are versatile donors that play important roles in a wide array of subdisciplines of inorganic chemistry including organometallic chemistry, bioinorganic chemistry, and cluster science. Despite the breadth of compounds containing sulfur-based ligands, those containing the simplest mercapto group, hydrosulfide ion (HS-), are significantly less developed. The acceptance of H2S/HS- as important biological signaling compounds during the last decade has engendered a renewed interest in the chemistry of these species. Bioinorganic reactivity of hydrosulfide, however, is only one aspect of its fascinating chemistry, much of which revolves around its interactions with transition metal ions. The coordination of HS- to d-block elements produces a unique class of substances that differ in significant ways from more ubiquitous metal thiolates. This review examines the preparation, structure, spectroscopy, and reactivity of such compounds and the roles they play across several fields of chemistry.

4.
Inorg Chem ; 59(2): 1075-1090, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909979

RESUMO

Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.

5.
Inorg Chem ; 58(22): 15225-15235, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697493

RESUMO

Reduction of [Fe(TPC)(THF)] (TPC = trianion of 5,10,15-triphenylcorrole) with KC8 generates the iron(II) corrole anion, K(THF)2[FeII(TPC)] (3a). Compound 3a represents the first example of an isolated and crystallographically characterized corrole complex of divalent iron. The compound adopts an intermediate-spin state (S = 1), displaying square-planar geometry about the iron atom. All-electron density functional theory (OLYP and B3LYP) calculations with STO-TZP basis sets indicate two essentially equienergetic d electron configurations, dxy2dz22dxz1dyz1 (occupation 1) and dxy2dz21dxz1dyz2 (occupation 2), as likely contenders for the ground state of [FeII(TPC)]-, with the optimized geometry of the former in slightly better agreement with the low-temperature X-ray structure. Solutions of 3a react with carbon monoxide to afford the low-spin (S = 0) complex, [Fe(TPC)(CO)]-, whereas introduction of oxygen at -78 °C leads to a putative O2 adduct, [Fe(TPC)(O2)]-, which decays rapidly even at low temperatures. Treatment of 3a with organic electrophiles results in formal oxidative addition to give both iron(III) and iron(IV) corrole species. With iodomethane, [Fe(TPC)Me] is produced, illustrating the first instance of alkyl ligand coordination in an iron corrole complex.

6.
Inorg Chem ; 57(15): 9544-9553, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30040391

RESUMO

Treatment of both [CoCl( tBuPNP)] and [NiCl( tBuPNP)] ( tBuPNP = anion of 2,5-bis((di- tert-butylphosphino)methyl)pyrrole) with one equivalent of benzoquinone affords the corresponding chloride complexes containing a dehydrogenated PNP ligand, tBudPNP ( tBudPNP = anion of 2,5-bis((di- tert-butylphosphino)methylene)-2,5-dihydropyrrole). Dehydrogenation of PNP to dPNP results in minimal change to steric profile of the ligand but has important consequences for the resulting redox potentials of the metal complexes, resulting in the ability to isolate both [CoH( tBudPNP)] and [CoEt( tBudPNP)], which are more challenging (hydride) or not possible (ethyl) to prepare with the parent PNP ligand. Electrochemical measurements with both the Co and Ni dPNP species demonstrate a substantial shift in redox potentials for both the M(II/III) and M(II/I) couples. In the case of the former, oxidation to trivalent Co was found to be reversible, and subsequent reaction with AgSbF6 afforded a rare example of a square-planar Co(III) species. Corresponding reduction of [CoCl( tBudPNP)] with KC8 produced the diamagnetic Co(I) species, [Co(N2)( tBudPNP)]. Further reduction of the Co(I) complex was found to generate a pincer-based π-radical anion that demonstrated well-resolved EPR features to the four hydrogen atoms and lone nitrogen atom of the ligand with minor contributions from cobalt and coordinated N2. Changes in the electronic character of the PNP ligand upon dehydrogenation are proposed to result from loss of aromaticity in the pyrrole ligand, resulting in a more reducing central amido donor. DFT calculations on the Co(II) complexes were performed to shed further insight into the electronic structure of the pincer complexes.

7.
Inorg Chem ; 55(5): 2421-6, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26872092

RESUMO

Gallium(III) tetraphenylporphyrinates (TPP) containing anionic sulfur ligands have been prepared and characterized in the solid state and solution. The complexes serve as structural models for iron(III) heme sites containing sulfur coordination that otherwise prove challenging to synthesize due to the propensity for reduction to iron(II). The compounds prepared include the first well-characterized example of a trivalent metalloporphyrinate containing a terminal hydrosulfide ligand, [Ga(SH)(TPP)], as well as [Ga(SEt)(TPP)], [Ga(SPh)(TPP)], and [Ga(SSi(i)Pr3)(TPP)]. The stability of these compounds toward reduction has permitted an investigation of their solid-state structures and electrochemistry. The structural features and reaction chemistry of the complexes in relation to their iron(III) analogs is discussed.


Assuntos
Compostos Férricos/química , Gálio/química , Heme/química , Sulfeto de Hidrogênio/química , Modelos Moleculares , Porfirinas/química , Compostos de Sulfidrila/química , Enxofre/química , Cristalografia por Raios X , Ligantes
8.
Inorg Chem ; 54(19): 9637-9645, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26378471

RESUMO

Homoleptic complexes of the anion of 7-azaindole (AzaIn) were synthesized and characterized for a series of 3d transition metals. For Mn(II), Fe(II), and Co(II), complexes of formula Na2[M(AzaIn)4]·2L (L = tetrahydrofuran (THF), 2-MeTHF, toluene, or benzene) were isolated by treatment of the corresponding metal chloride salts with 7-azaindole in the presence of sodium hexamethyldisilazide. The complexes adopt tetrahedral geometries with exclusive coordination to the transition metal ion through the pyrrolic N1 nitrogen atoms of the AzaIn ligands. Solid-state structures of the complexes demonstrate that the sodium cations remain tightly associated with the coordination entities through interaction with both the pyrrolic and pyridine nitrogen atoms of the azaindolide ligands. For Fe(II), replacement of the sodium cations by other alkali metal ions (Li or K) generates new complexes that demonstrate similar coordination geometries to the sodium salts. As a means of comparison, the Fe(II) complex of 4-azaindolide was also investigated. Na2[Fe(4-AzaIn)4]·2L adopts a similar solution structure to the 7-azaindolide complexes as judged by NMR spectroscopy and cyclic voltammetry. Density functional theory calculations were performed to investigate the bonding in the 7-azaindolide complexes. Results demonstrate that 7-azaindolide-κ(1)-N1 is a nearly pure sigma donor ligand that features a high degree of ionic character in its bonding to mid 3d transition metal ions.


Assuntos
Complexos de Coordenação/síntese química , Indóis/química , Nitrogênio/química , Elementos de Transição/química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
9.
Inorg Chem ; 54(15): 7362-7, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26203786

RESUMO

A density functional theory (DFT) study of {CoNO}(8) cobalt nitrosyl complexes containing the [n,n]tropocoronand ligand (TC-n,n) has revealed a sharp reduction of singlet-triplet gaps as the structures change from near-square-pyramidal (for n = 3) to trigonal-bipyramidal with an equatorial NO (for n = 5, 6). An experimental reinvestigation of [Co(TC-3,3)(NO)] has confirmed that it is not paramagnetic, as originally reported, but diamagnetic, like all other {CoNO}(8) complexes. Furthermore, DFT calculations indicate a substantial singlet-triplet gap of about half an eV or higher for this complex. At the other end of the series, low-energy, thermally accessible triplet states are predicted for [Co(TC-6,6)(NO)]. Enhanced triplet-state reactivity may well provide a partial explanation for the failure to isolate this compound as a stable species.


Assuntos
Cobalto/química , Compostos Macrocíclicos/química , Nitrogênio/química , Compostos Organometálicos/química , Teoria Quântica , Ligantes , Modelos Moleculares , Conformação Molecular
10.
Inorg Chem ; 52(21): 12468-76, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138018

RESUMO

The chemistry of several iron(III) porphyrinates containing silanethiolate ligands is described. The complexes are prepared by protonolysis reactions of silanethiols with the iron(III) precursors, [Fe(OMe)(TPP)] and [Fe(OH)(H2O)(TMP)] (TPP = dianion of meso-tetraphenylporphine; TMP = dianion of meso-tetramesitylporphine). Each of the compounds has been fully characterized in solution and the solid state. The stability of the silanethiolate complexes versus other iron(III) porphyrinate complexes containing sulfur-based ligands allows for an examination of their reactivity with several biologically relevant small molecules including H2S, NO, and 1-methylimidazole. Electrochemically, the silanethiolate complexes display a quasi-reversible one-electron oxidation event at potentials higher than that observed for an analogous arenethiolate complex. The behavior of these complexes versus other sulfur-ligated iron(III) porphyrinates is discussed.


Assuntos
Ferro/química , Metaloporfirinas/química , Porfirinas/química , Eletroquímica , Imidazóis/química , Ligantes , Espectroscopia de Ressonância Magnética , Metaloporfirinas/síntese química , Estrutura Molecular , Oxirredução , Silanos/química , Enxofre/química
11.
Inorg Chem ; 51(23): 12789-95, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23157210

RESUMO

A new pincer ligand, (P(2)(Ph)Pyr)(-), based on the anion of 2,5-bis[(diphenylphosphino)methyl]pyrrole has been prepared in four steps from pyrrole. The ligand undergoes oxidation to diphosphine oxide under ambient conditions and was therefore isolated as its borane adduct, H(P(2)(Ph)Pyr)·2BH(3) (2). Delivery of the ligand to nickel(II) was accomplished by the direct reaction of NiCl(2) with 2 in the presence of Et(2)NH to afford [NiCl(P(2)(Ph)Pyr)]. Salt metathesis reactions of the chloro complex afford new compounds including [Ni(CH(3))(P(2)(Ph)Pyr)] and [Ni(NCCH(3))(P(2)(Ph)Pyr)](OTf). In all cases, the ligand gives rise to diamagnetic square-planar complexes, which have been fully characterized in solution and the solid state. All complexes examined display an irreversible oxidation to nickel(III) according to cyclic voltammetry. Reduction of the chloro complex in dichloromethane results in an electrocatalytic process, whereas reduction in tetrahydrofuran leads to the irreversible formation of a nickel(I) species.


Assuntos
Níquel/química , Compostos Organometálicos/química , Fosfinas/química , Pirróis/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Temperatura
12.
Dalton Trans ; 51(40): 15475-15483, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36156616

RESUMO

Iron(II) boryl complexes of the pyrrole-based pincer ligand, CyPNP (CyPNP = anion of 2,5-bis(dicyclohexylphophinomethyl)pyrrole) have been synthesized and their insertion reactivity interrogated. Compounds of the type [Fe(BE)(CyPNP)] (E = pinacholato or catecholato) can be generated by treatment of the precursors, [Fe(OPh)(py)(CyPNP)] or [FeMe(CyPNP)], with B2E2. The boryl complexes are meta stable, but permit additional reactivity with several unsaturated substrates. Reaction with alkynes, RCCR', leads to rapid insertion into the Fe-B bond to generate stable vinyl boronate complexes of the type [Fe(C{R}C{R'}BE)(CyPNP)] (R, R' = H, Me, Ph, -CCPh). Each of the compounds is five-coordinate in the solid state by virtue of coordination of one of the oxygen atoms of the boronate ester. Similar reaction with nitriles, RCN (R = Ph, Me), results in facile de-cyanation to produce the correpsonding hydrocarbon complexes, [FeR(CyPNP)]. In the case of the bulky nitrile 1-AdCN, the insertion intermediate, [Fe(C{Ad}NBpin)(CyPNP)], has been isolated and structurally characterized. Treatment of the boryl complexes with styrene derivatives results in initial insertion to give an alkylboronate complex followed by either ß-H elimination or protonation to give the products of C-H borylation and hydroboration, respectively.

13.
Inorg Chem ; 50(4): 1570-9, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21244036

RESUMO

Several nitrosyl complexes of Fe and Co have been prepared using the sterically hindered Ar-nacnac ligand (Ar-nacnac = anion of [(2,6-diisopropylphenyl)NC(Me)](2)CH). The dinitrosyliron complexes [Fe(NO)(2)(Ar-nacnac)] (1) and (Bu(4)N)[Fe(NO)(2)(Ar-nacnac)] (2) react with [Fe(III)(TPP)Cl] (TPP = tetraphenylporphine dianion) to generate [Fe(II)(NO)(TPP)] and the corresponding mononitrosyliron complexes. The factors governing NO transfer with dinitrosyliron complexes (DNICs) 1 and 2 are evaluated, together with the chemistry of the related mononitrosyliron complex, [Fe(NO)Br(Ar-nacnac)] (4). The synthesis and properties of the related cobalt dinitrosyl [Co(NO)(2)(Ar-nacnac)] (3) is also discussed for comparison to DNICs 1 and 2. The solid-state structures of several of these compounds as determined by X-ray crystallography are reported.


Assuntos
Materiais Biocompatíveis/síntese química , Biomimética/métodos , Óxidos de Nitrogênio/síntese química , Materiais Biocompatíveis/química , Cobalto/química , Cristalografia por Raios X , Ferro/química , Ligantes , Modelos Químicos , Óxidos de Nitrogênio/química , Porfirinas/química
14.
J Am Chem Soc ; 132(51): 18168-76, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21133361

RESUMO

Reactions of nitric oxide with cysteine-ligated iron-sulfur cluster proteins typically result in disassembly of the iron-sulfur core and formation of dinitrosyl iron complexes (DNICs). Here we report the first evidence that DNICs also form in the reaction of NO with Rieske-type [2Fe-2S] clusters. Upon treatment of a Rieske protein, component C of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1, with an excess of NO(g) or NO-generators S-nitroso-N-acetyl-D,L-pencillamine and diethylamine NONOate, the absorbance bands of the [2Fe-2S] cluster are extinguished and replaced by a new feature that slowly grows in at 367 nm. Analysis of the reaction products by electron paramagnetic resonance, Mössbauer, and nuclear resonance vibrational spectroscopy reveals that the primary product of the reaction is a thiolate-bridged diiron tetranitrosyl species, [Fe(2)(µ-SCys)(2)(NO)(4)], having a Roussin's red ester (RRE) formula, and that mononuclear DNICs account for only a minor fraction of nitrosylated iron. Reduction of this RRE reaction product with sodium dithionite produces the one-electron-reduced RRE, having absorptions at 640 and 960 nm. These results demonstrate that NO reacts readily with a Rieske center in a protein and suggest that dinuclear RRE species, not mononuclear DNICs, may be the primary iron dinitrosyl species responsible for the pathological and physiological effects of nitric oxide in such systems in biology.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Oxigenases/química , Materiais Biomiméticos/química , Doadores de Óxido Nítrico/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica , Pseudomonas/enzimologia
15.
J Am Chem Soc ; 132(20): 6914-6, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20429508

RESUMO

We have applied (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to identify protein-bound dinitrosyl iron complexes. Intense NRVS peaks due to vibrations of the N-Fe-N unit can be observed between 500 and 700 cm(-1) and are diagnostic indicators of the type of iron dinitrosyl species present. NRVS spectra for four iron dinitrosyl model compounds are presented and used as benchmarks for the identification of species formed in the reaction of Pyrococcus furiosus ferredoxin D14C with nitric oxide.


Assuntos
Ferro/química , Ferro/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Proteínas/química , Proteínas/metabolismo , Vibração , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Ferro/análise , Óxidos de Nitrogênio/análise , Pyrococcus furiosus , Análise Espectral
16.
Inorg Chem ; 49(14): 6338-48, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20666391

RESUMO

We are pursuing a dual strategy for investigating the chemistry of nitric oxide as a biological signaling agent. In one approach, metal-based fluorescent sensors for the detection of NO in living cells are evaluated, and a sensor based on a copper fluorescein complex has proved to be a valuable lead compound. Sensors of this class permit identification of NO from both inducible and constitutive forms of nitric oxide synthase and facilitate investigation of different NO functions in response to external stimuli. In the other approach, we employ synthetic model complexes of iron-sulfur clusters to probe their reactivity toward nitric oxide as biomimics of the active sites of iron-sulfur proteins. Our studies reveal that NO disassembles the Fe-S clusters to form dinitrosyl iron complexes.


Assuntos
Corantes Fluorescentes/química , Óxido Nítrico/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Óxido Nítrico/metabolismo , Oxirredução
17.
Dalton Trans ; 49(33): 11577-11582, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32749418

RESUMO

The combined experimental and theoretical investigation of the magnetic properties of the cobalt(ii) NHC complexes (NHC = N-heterocyclic carbene); [Co(CH2SiMe3)2(IPr)] (1), [CoCl2(IMes)2] (2) and [Co(CH3)2(IMes)2] (3) revealed a large easy plane anisotropy for 1 (D = +73.7 cm-1) and a moderate easy axis anisotropy for 2 (D = -7.7 cm-1) due to significant out-of-state spin-orbit coupling. Dynamic magnetic measurements revealed slow relaxation of the magnetization for 1 (Ueff = 22.5 K, τ0 = 3 × 10-7 s, 1000 Oe) and for 2 (Ueff = 20.2 K, τ0 = 1.73 × 10-8 s, 1500 Oe). The molecular origin of the slow relaxation phenomena was further supported by the retention of AC signal in 10% solutions in 2-MeTHF which reveals a second zero field AC signal in 1 at higher frequencies. Compound 3 was found to be an S = 1/2 system.

18.
J Am Chem Soc ; 131(23): 7964-5, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19459625

RESUMO

Reaction of the Rieske cluster model complex (Et(4)N)(2)[(N(2)CHPh)Fe(2)S(2)(S(2)-o-xyl)] (N(2)CHPh = dianion of 2,2'-(phenylmethylene)bis(3-methylindole); S(2)-o-xyl = dianion of 1,2-phenylenedimethanethiol) with nitric oxide results in disassembly of the iron-sulfur core and formation of {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs). Isolation and characterization of these DNICs, including the new compound, (Et(4)N)[(N(2)CHPh)Fe(NO)(2)], demonstrates a homology between the synthetic Riekse cluster and purely thiolate-bound Fe(2)S(2) clusters in reactions involving NO. To model the nitrogen-rich environment of Rieske cluster-derived dinitroysliron species, a new type of neutral {Fe(NO)(2)}(9) DNIC was prepared containing a beta-diketiminate ligand. One-electron reduction of this compound affords the isolable {Fe(NO)(2)}(10) DNIC. These compounds represent a rare example of structurally analogous DNIC redox partners.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Ferro/química , Óxidos de Nitrogênio/química
19.
J Am Chem Soc ; 130(46): 15602-10, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18939795

RESUMO

The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussin's black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.


Assuntos
Compostos de Ferro/química , Óxido Nítrico/química , S-Nitrosotióis/química , Compostos de Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular , Espectrofotometria
20.
J Am Chem Soc ; 130(18): 5886-900, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18402450

RESUMO

The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The determination is carried out for a series of alkylidene-based catalysts having the general formula [([triple bond]SiO)M(ER)(=CH(t)Bu)(R')] (M = Re, Ta, Mo or W; ER = C(t)Bu, NAr or CH2(t)Bu; R' = CH2(t)Bu, NPh2, NC4H4). Proton-carbon dipolar coupling constants and carbon chemical shift anisotropies (CSA) are determined experimentally by solid-state NMR. Room-temperature molecular dynamics is quantified through order parameters determined from the experimental data. For the chemical shift anisotropy data, we validate and use a method that integrates static values for the CSA obtained computationally by DFT, obviating the need for low-temperature measurements. Comparison of the room-temperature data with the calculations shows that the widths of the calculated static limit dipolar couplings and CSAs are always greater than the experimentally determined values, providing a clear indication of motional averaging on the NMR time scale. Moreover, the dynamics are found to be significantly different within the series of molecular complexes, with order parameters ranging from = 0.5 for [([triple bond]SiO)Ta(=CH(t)Bu)(CH2(t)Bu)2] and [([triple bond]SiO)Re([triple bond]C(t)Bu)(=CH(t)Bu)(CH2(t)Bu)] to = 0.9 for [([triple bond]SiO)Mo([triple bond]NAr)(=CH(t)Bu)(R') with R' = CH2(t)Bu, NPh2, NC4H4. The data also show that the motion is not isotropic and could be either a jump between two sites or more likely restricted librational motion. The dynamics are discussed in terms of the molecular structure of the surface organometallic complexes, and the orientation of the CSAs tensor at the alkylidene carbon is shown to be directly related to the magnitude of the alpha-alkylidene CH agostic interation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA