Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 325(1): C129-C140, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273239

RESUMO

Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Varizes Esofágicas e Gástricas , Humanos , Doença Hepática Terminal/complicações , Varizes Esofágicas e Gástricas/complicações , Hemorragia Gastrointestinal/complicações , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/etiologia
2.
Adv Exp Med Biol ; 1318: 197-208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33973180

RESUMO

Viral respiratory tract infections are prevalent in children. They have substantial effects on childhood morbidity throughout the world, especially in developing countries. In this chapter, we describe the preliminary characteristics of pediatric COVID-19 and discover that severe and critical disease in children is rare. Many children remain asymptomatic. The reason why severity increases with progressing age and largely spares children is not yet known. In the search for possible explanations, we explore key differences between the pediatric and adult immune responses to new pathogens, and in host factors, such as ACE2 abundance.


Assuntos
COVID-19 , Pediatria , Adulto , Criança , Humanos , Peptidil Dipeptidase A , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 115(37): E8737-E8745, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150410

RESUMO

Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) cause ∼2% of all human cancers. RNase R-resistant RNA sequencing revealed that both gammaherpesviruses encode multiple, uniquely stable, circular RNAs (circRNA). EBV abundantly expressed both exon-only and exon-intron circRNAs from the BamHI A rightward transcript (BART) locus (circBARTs) formed from a spliced BART transcript and excluding the EBV miRNA region. The circBARTs were expressed in all verified EBV latency types, including EBV-positive posttransplant lymphoproliferative disease, Burkitt lymphoma, nasopharyngeal carcinoma, and AIDS-associated lymphoma tissues and cell lines. Only cells infected with the B95-8 EBV strain, with a 12-kb BART locus deletion, were negative for EBV circBARTs. Less abundant levels of EBV circRNAs originating from LMP2- and BHLF1-encoding genes were also identified. The circRNA sequencing of KSHV-infected primary effusion lymphoma cells revealed a KSHV-encoded circRNA from the vIRF4 locus (circvIRF4) that was constitutively expressed. In addition, KSHV polyadenylated nuclear (PAN) RNA locus generated a swarm (>100) of multiply backspliced, low-abundance RNase R-resistant circRNAs originating in both sense and antisense directions consistent with a novel hyperbacksplicing mechanism. In EBV and KSHV coinfected cells, exon-only EBV circBARTs were located more in the cytoplasm, whereas the intron-retaining circBARTs were found in the nuclear fraction. KSHV circvIRF4 and circPANs were detected in both nuclear and cytoplasmic fractions. Among viral circRNAs tested, none were found in polysome fractions from KSHV-EBV coinfected BC1 cells, although low-abundance protein translation from viral circRNAs could not be excluded. The circRNAs are a new class of viral transcripts expressed in gammaherpesvirus-related tumors that might contribute to viral oncogenesis.


Assuntos
Vírus de DNA Tumorais/genética , Regulação Viral da Expressão Gênica , RNA Viral/genética , RNA/genética , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Linfoma/virologia , RNA Circular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Kaposi/virologia
4.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575728

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Meanwhile, increased demand for testing has led to a shortage of reagents and supplies and compromised the performance of diagnostic laboratories in many countries. Both the World Health Organization (WHO) and the Center for Disease Control and Prevention (CDC) recommend multi-step RT-PCR assays using multiple primer and probe pairs, which might complicate the interpretation of the test results, especially for borderline cases. In this study, we describe an alternative RT-PCR approach for the detection of SARS-CoV-2 RNA that can be used for the probe-based detection of clinical isolates in diagnostics as well as in research labs using a low-cost SYBR green method. For the evaluation, we used samples from patients with confirmed SARS-CoV-2 infections and performed RT-PCR assays along with successive dilutions of RNA standards to determine the limit of detection. We identified an M-gene binding primer and probe pair highly suitable for the quantitative detection of SARS-CoV-2 RNA for diagnostic and research purposes.


Assuntos
Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Betacoronavirus/genética , Teste para COVID-19 , Células CACO-2 , Chlorocebus aethiops , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/economia , Proteínas M de Coronavírus , Custos e Análise de Custo , Humanos , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2 , Sensibilidade e Especificidade , Células Vero , Proteínas da Matriz Viral/genética
5.
Transpl Infect Dis ; 20(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29064138

RESUMO

Human polyomavirus-7-associated rash and pruritus (PVARP) is a chronic superficial viral skin infection, which primarily impacts immunocompromised individuals. We report on a case of PVARP in a lung transplant recipient. Our patient developed symptoms 13 years after being on his immunosuppressive regimen, with an insidious course of progressive gray lichenification with marked islands of sparing and quality of life-altering pruritus. Treatment for PVARP is not established; however, topical cidofovir combined with immunomodulation may offer sustained therapeutic benefit.


Assuntos
Vírus BK/efeitos dos fármacos , Citosina/análogos & derivados , Transplante de Pulmão/efeitos adversos , Organofosfonatos/uso terapêutico , Infecções por Polyomavirus/tratamento farmacológico , Infecções Tumorais por Vírus/tratamento farmacológico , Administração Tópica , Adulto , Idoso , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Cidofovir , Citosina/administração & dosagem , Citosina/uso terapêutico , Exantema/tratamento farmacológico , Exantema/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Organofosfonatos/administração & dosagem , Infecções por Polyomavirus/etiologia , Prurido/tratamento farmacológico , Prurido/virologia , Transplantados
6.
Proc Natl Acad Sci U S A ; 111(41): E4342-9, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25271323

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are human DNA tumor viruses that express nuclear antigens [latency-associated nuclear antigen 1 (LANA1) and Epstein-Barr nuclear antigen 1 (EBNA1)] necessary to maintain and replicate the viral genome. We report here that both LANA1 and EBNA1 undergo highly efficient +1/-2 programmed ribosomal frameshifting to generate previously undescribed alternative reading frame (ARF) proteins in their repeat regions. EBNA1(ARF) encodes a KSHV LANA-like glutamine- and glutamic acid-rich protein, whereas KSHV LANA1(ARF) encodes a serine/arginine-like protein. Repeat sequence recoding has not been described previously for human DNA viruses. Programmed frameshifting (recoding) to generate multiple proteins from one RNA sequence can increase the coding capacity of a virus, without incurring a selective penalty against increased capsid size. The presence of similar repeat sequences in cellular genes, such as huntingtin, suggests that a comparison of repeat recoding in virus and human systems may provide functional and mechanistic insights for both systems.


Assuntos
Antígenos Virais/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Fases de Leitura/genética , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Antígenos Virais/química , Linhagem Celular Tumoral , Citoplasma/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Mudança da Fase de Leitura do Gene Ribossômico , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Iniciação Traducional da Cadeia Peptídica , Estrutura Terciária de Proteína
7.
J Gen Virol ; 96(12): 3532-3544, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385761

RESUMO

Merkel cell polyomavirus (MCV) is clonally integrated in over 80 % of Merkel cell carcinomas and mediates tumour development through the expression of viral oncoproteins, the large T (LT) and small T antigens (sT). Viral integration is associated with signature mutations in the T-antigen locus that result in deletions of C-terminal replicative functions of the LT antigen. Despite these truncations, the LT LXCXE retinoblastoma (Rb) pocket protein family binding domain is retained, and the entire sT isoform is maintained intact. To investigate the ability of MCV oncoproteins to regulate host gene expression, we performed microarray analysis on cells stably expressing tumour-derived LT, tumour-derived LT along with sT, and tumour-derived LT with a mutated Rb interaction domain. Gene expression alterations in the presence of tumour-derived LT could be classified into three main groups: genes that are involved in the cell cycle (specifically the G1/S transition), genes involved in DNA replication and genes involved in cellular movement. The LXCXE mutant LT largely reversed gene expression alterations detected with the WT tumour-derived LT, while co-expression of sT did not significantly affect these patterns of gene expression. LXCXE-dependent upregulation of cyclin E and CDK2 correlated with increased proliferation in tumour-derived LT-expressing cells. Tumour-derived LT and tumour-derived LT plus sT increased expression of multiple cytokines and chemokines, which resulted in elevated levels of secreted IL-8. We concluded that, in human fibroblasts, the LXCXE motif of tumour-derived LT enhances cellular proliferation and upregulates cell cycle and immune signalling gene transcription.


Assuntos
Antígenos Virais de Tumores/fisiologia , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Inflamação/metabolismo , Poliomavírus das Células de Merkel/imunologia , Antígenos Virais de Tumores/imunologia , Proliferação de Células , Células Cultivadas , Citocinas/genética , Reparo do DNA , Replicação do DNA/fisiologia , Fibroblastos/fisiologia , Fibroblastos/virologia , Regulação da Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/imunologia , Transcrição Gênica , Regulação para Cima
8.
J Virol ; 87(5): 2744-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255808

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) protein is constitutively expressed in all KSHV-infected cells, as well as in all forms of KSHV-associated malignancies. LANA1 is a multifunctional KSHV oncoprotein containing multiple repeat sequences that is important for viral episome maintenance and the regulation of cellular and viral gene expression. We characterize here multiple LANA1 isoforms and show that ∼50% of LANA1 is naturally generated as N-terminally truncated shoulder proteins that are detected on SDS-PAGE as faster-migrating shoulder bands designated LANA1(S). Higher-molecular-weight LANA1(S) isoforms initiate downstream at noncanonical sites within the N-terminal region, whereas lower-molecular-weight LANA1(S) isoforms initiate downstream within the central repeat 1 domain. LANA1(S) proteins lack an N-terminal nuclear localization signal motif, and some isoforms differ from full-length, canonical LANA1 by localizing to perinuclear and cytoplasmic sites. Although LANA1 has until now been assumed to be solely active in the nucleus, this finding indicates that this major KSHV oncoprotein may have cytoplasmic activities as well. KSHV overcomes its limited genetic coding capacity by generating alternatively initiated protein isoforms that may have distinct biological functions.


Assuntos
Antígenos Virais/química , Antígenos Virais/metabolismo , Citoplasma/metabolismo , Herpesvirus Humano 8/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Iniciação Traducional da Cadeia Peptídica , Antígenos Virais/genética , Linhagem Celular , DNA Viral/genética , Células HEK293 , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
9.
Sci Rep ; 14(1): 12365, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811590

RESUMO

SARS-CoV-2 is the causative agent of COVID-19. Timely and accurate diagnostic testing is vital to contain the spread of infection, reduce delays in treatment and care, and inform patient management. Optimal specimen type (e.g. nasal swabs or saliva), timing of sampling, viral marker assayed (RNA or antigen), and correlation with viral infectivity and COVID-19 symptoms severity remain incompletely defined. We conducted a field study to evaluate SARS-CoV-2 viral marker kinetics starting from very early times after infection. We measured RNA and antigen levels in nasal swabs and saliva, virus outgrowth in cell culture from nasal swabs, and antibody levels in blood in a cohort of 30 households. Nine household contacts (HHC) became infected with SARS-CoV-2 during the study. Viral RNA was detected in saliva specimens approximately 1-2 days before nasal swabs in six HHC. Detection of RNA was more sensitive than of antigen, but antigen detection was better correlated with culture positivity, a proxy for contagiousness. Anti-nucleocapsid antibodies peaked one to three weeks post-infection. Viral RNA and antigen levels were higher in specimens yielding replication competent virus in cell culture. This study provides important data that can inform how to optimally interpret SARS-CoV-2 diagnostic test results.


Assuntos
Anticorpos Antivirais , Biomarcadores , COVID-19 , Características da Família , RNA Viral , SARS-CoV-2 , Saliva , Humanos , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Saliva/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Antígenos Virais/análise , Antígenos Virais/imunologia , Cinética , Masculino , Adulto , Pessoa de Meia-Idade
10.
Front Microbiol ; 14: 1193320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342561

RESUMO

Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the virus evolves under selection pressure which already led to the emergence of several drug resistant strains. Broad spectrum host-directed antivirals (HDA) are promising therapeutic options, however the robust identification of relevant host factors by CRISPR/Cas9 or RNA interference screens remains challenging due to low consistency in the resulting hits. To address this issue, we employed machine learning, based on experimental data from several knockout screens and a drug screen. We trained classifiers using genes essential for virus life cycle obtained from the knockout screens. The machines based their predictions on features describing cellular localization, protein domains, annotated gene sets from Gene Ontology, gene and protein sequences, and experimental data from proteomics, phospho-proteomics, protein interaction and transcriptomic profiles of SARS-CoV-2 infected cells. The models reached a remarkable performance suggesting patterns of intrinsic data consistency. The predicted HDF were enriched in sets of genes particularly encoding development, morphogenesis, and neural processes. Focusing on development and morphogenesis-associated gene sets, we found ß-catenin to be central and selected PRI-724, a canonical ß-catenin/CBP disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV and IAV in different cell line models. We detected a concentration-dependent reduction in cytopathic effects, viral RNA replication, and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. Independent of virus infection, PRI-724 treatment caused cell cycle deregulation which substantiates its potential as a broad spectrum antiviral. Our proposed machine learning concept supports focusing and accelerating the discovery of host dependency factors and identification of potential host-directed antivirals.

11.
J Clin Virol ; 165: 105499, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327554

RESUMO

SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19. In addition to the full length positive-sensed, single-stranded genomic RNA (gRNA), viral subgenomic RNAs (sgRNAs) that are required for expression of the 3' region of the genome are synthesized in virus-infected cells. However, whether these sgRNA-species might be used as a measure of active virus replication and to predict infectivity is still under debate. The commonly used methods to monitor and quantitate SARS-CoV-2 infections are based on RT-qPCR analysis and the detection of gRNA. The infectivity of a sample obtained from nasopharyngeal or throat swabs is associated with the viral load and inversely correlates with Ct-values, however, a cut-off value predicting the infectivity highly depends on the performance of the assay. Furthermore, gRNA derived Ct-values result from nucleic acid detection and do not necessarily correspond to active replicating virus. We established a multiplex RT-qPCR assay on the cobas 6800 omni utility channel concomitantly detecting SARS-CoV-2 gRNAOrf1a/b, sgRNAE,7a,N, and human RNaseP-mRNA used as human input control. We compared the target specific Ct-values with the viral culture frequency and performed ROC curve analysis to determine the assay sensitivity and specificity. We found no advantage in the prediction of viral culture when using sgRNA detection compared to gRNA only, since Ct-values for gRNA and sgRNA were highly correlated and gRNA offered a slightly more reliable predictive value. Single Ct-values alone only provide a very limited prediction for the presence of replication competent virus. Hence, careful consideration of the medical history including symptom onset has to be considered for risk stratification.


Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Subgenômico , Genômica , Replicação Viral
12.
iScience ; 26(2): 105944, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36644320

RESUMO

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.

13.
J Biol Chem ; 286(19): 17079-90, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454559

RESUMO

Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication.


Assuntos
Antígenos Transformantes de Poliomavirus/química , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Células de Merkel/virologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Exocitose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Espectrometria de Massas , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Proteína do Retinoblastoma/metabolismo , Transfecção , Proteínas de Transporte Vesicular/química , Replicação Viral
14.
Front Aging ; 3: 883724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821813

RESUMO

The immune response is known to wane after vaccination with BNT162b2, but the role of age, morbidity and body composition is not well understood. We conducted a cross-sectional study in long-term care facilities (LTCFs) for the elderly. All study participants had completed two-dose vaccination with BNT162b2 five to 7 months before sample collection. In 298 residents (median age 86 years, range 75-101), anti-SARS-CoV-2 rector binding IgG antibody (anti-RBD-IgG) concentrations were low and inversely correlated with age (mean 51.60 BAU/ml). We compared the results to Health Care Workers (HCW) aged 18-70 years (n = 114, median age: 53 years), who had a higher mean anti-RBD-IgG concentration of 156.99 BAU/ml. Neutralization against the Delta variant was low in both groups (9.5% in LTCF residents and 31.6% in HCWs). The Charlson Comorbidity Index was inversely correlated with anti-RBD-IgG, but not the body mass index (BMI). A control group of 14 LTCF residents with known breakthrough infection had significant higher antibody concentrations (mean 3,199.65 BAU/ml), and 85.7% had detectable neutralization against the Delta variant. Our results demonstrate low but recoverable markers of immunity in LTCF residents five to 7 months after vaccination.

15.
Viruses ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146823

RESUMO

Some of the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are less susceptible to neutralization with post-vaccine sera and monoclonal antibodies targeting the viral spike glycoprotein. This raises concerns of disease control, transmissibility, and severity. Numerous substitutions have been identified to increase viral fitness within the nucleocapsid and nonstructural proteins, in addition to spike mutations. Therefore, we sought to generate infectious viruses carrying only the variant-specific spike mutations in an identical backbone to evaluate the impact of spike and non-spike mutations in the virus life cycle. We used en passant mutagenesis to generate recombinant viruses carrying spike mutations of B.1 and B.1.617.2 variants using SARS-CoV-2- bacterial artificial chromosome (BAC). Neutralization assays using clinical sera yielded comparable results between recombinant viruses and corresponding clinical isolates. Non-spike mutations for both variants neither seemed to effect neutralization efficiencies with monoclonal antibodies nor the response to treatment with inhibitors. However, live-cell imaging and microscopy revealed differences, such as persisting syncytia and pronounced cytopathic effect formation, as well as their progression between BAC-derived viruses and clinical isolates in human lung epithelial cell lines and primary bronchial epithelial cells. Complementary RNA analyses further suggested a potential role of non-spike mutations in infection kinetics.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/genética , Humanos , Mutação , RNA Complementar , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
16.
EBioMedicine ; 82: 104158, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834885

RESUMO

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19
17.
J Clin Virol ; 135: 104713, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352470

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread from symptomatic patients with COVID-19, but also from asymptomatic individuals. Therefore, robust surveillance and timely interventions are essential for the control of virus spread within the community. In this regard the frequency of testing and speed of reporting, but not the test sensitivity alone, play a crucial role. OBJECTIVES: In order to reduce the costs and meet the expanding demands in real-time RT-PCR (rRT-PCR) testing for SARS-CoV-2, complementary assays, such as rapid antigen tests, have been developed. Rigorous analysis under varying conditions is required to assess the clinical performance of these tests and to ensure reproducible results. RESULTS: We evaluated the sensitivity and specificity of a recently licensed rapid antigen test using 137 clinical samples in two institutions. Test sensitivity was between 88.2-89.6 % when applied to samples with viral loads typically seen in infectious patients. Of 32 rRT-PCR positive samples, 19 demonstrated infectivity in cell culture, and 84 % of these samples were reactive with the antigen test. Seven full-genome sequenced SARS-CoV-2 isolates and SARS-CoV-1 were detected with this antigen test, with no cross-reactivity against other common respiratory viruses. CONCLUSIONS: Numerous antigen tests are available for SARS-CoV-2 testing and their performance to detect infectious individuals may vary. Head-to-head comparison along with cell culture testing for infectivity may prove useful to identify better performing antigen tests. The antigen test analyzed in this study is easy-to-use, inexpensive, and scalable. It can be helpful in monitoring infection trends and thus has potential to reduce transmission.


Assuntos
Antígenos Virais/genética , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Genoma Viral/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Viral/imunologia
18.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578275

RESUMO

The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.51-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which, however, might be circumvented by combination therapy with casirivimab together.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Alelos , Substituição de Aminoácidos , Linhagem Celular , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Testes de Neutralização
19.
J Clin Med ; 10(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477365

RESUMO

Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8-82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.

20.
Front Microbiol ; 12: 701198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394046

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile cellular infection model that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The model is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression (A549-AT). Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV-2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected A549-AT cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel model cell line allows rapid and sensitive monitoring of SARS-CoV-2 infection and the screening for host factors essential for viral replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA