Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Health Geogr ; 13: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383521

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease with a lifetime risk of developing as 1 in 700. Despite many recent discoveries about the genetics of ALS, the etiology of sporadic ALS remains largely unknown with gene-environment interaction suspected as a driver. Water quality and the toxin beta methyl-amino-alanine produced by cyanobacteria are suspected environmental triggers. Our objective was to develop an eco-epidemiological modeling approach to characterize the spatial relationships between areas of higher than expected ALS incidence and lake water quality risk factors derived from satellite remote sensing as a surrogate marker of exposure. METHODS: Our eco-epidemiological modeling approach began with implementing a spatial clustering analysis that was informed by local indicators of spatial autocorrelation to identify locations of normalized excess ALS counts at the census tract level across northern New England. Next, water quality data for all lakes over 6 hectares (n = 4,453) were generated using Landsat TM band ratio regression techniques calibrated with in situ lake sampling. Derived lake water quality risk maps included chlorophyll-a (Chl-a), Secchi depth (SD), and total nitrogen (TN). Finally, a spatially-aware logistic regression modeling approach was executed characterizing relationships between the derived lake water quality metrics and ALS hot spots. RESULTS: Several distinct ALS hot spots were identified across the region. Remotely sensed lake water quality indicators were successfully derived; adjusted R² values ranged between 0.62-0.88 for these indicators based on out-of-sample validation. Map products derived from these indicators represent the first wall-to-wall metrics of lake water quality across the region. Logistic regression modeling of ALS case membership in localized hot spots across the region, i.e., census tracts with higher than expected ALS counts, showed the following: increasing average SD within a radius of 30 km corresponds with a decrease in the odds of belonging to an ALS hot spot by 59%; increasing average TN within a radius of 30 km and average Chl-a concentration within a radius of 10 km correspond with increased odds of belonging to an ALS hot spot by 167% and 4%, respectively. CONCLUSIONS: The strengths of satellite remote sensing information can help overcome traditional field limitations and spatiotemporal data gaps to provide the public health community valuable exposure data. Geographic scale needs to be diligently considered when evaluating relationships among ecological processes, risk factors, and human health outcomes. Broadly, we found that poorer lake water quality was significantly associated with increased odds of belonging to an ALS cluster in the region. These findings support the hypothesis that sporadic ALS (sALS) can, in part, be triggered by environmental water-quality indicators and lake conditions that promote harmful algal blooms.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Monitoramento Ambiental/métodos , Lagos/análise , Qualidade da Água , Idoso , Feminino , Humanos , Lagos/microbiologia , Masculino , Pessoa de Meia-Idade , New England/epidemiologia , Fatores de Risco , Qualidade da Água/normas
2.
Earth Space Sci ; 8(3): e2020EA001554, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791393

RESUMO

Irrigated rice requires intense water management under typical agronomic practices. Cost effective tools to improve the efficiency and assessment of water use is a key need for industry and resource managers to scale ecosystem services. In this research we advance model-based decomposition and machine learning to map inundated rice using time-series polarimetric, L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) observations. Simultaneous ground truth observations recorded water depth inundation during the 2019 crop season using instrumented fields across the study site in Arkansas, USA. A three-component model-based decomposition generated metrics representing surface-, double bounce-, and volume-scattering along with a shape factor, randomness factor, and the Radar Vegetation Index (RVI). These physically meaningful metrics characterized crop inundation status independent of growth stage including under dense canopy cover. Machine learning (ML) comparisons employed Random Forest (RF) using the UAVSAR derived parameters to identify cropland inundation status across the region. Outcomes show that RVI, proportion of the double-bounce within total scattering, and the relative comparison between the double-bounce and the volume scattering have moderate to strong mechanistic ability to identify rice inundation status with Overall Accuracy (OA) achieving 75%. The use of relative ratios further helped mitigate the impacts of far range incidence angles. The RF approach, which requires training data, achieved a higher OA and Kappa of 88% and 71%, respectively, when leveraging multiple SAR parameters. Thus, the combination of physical characterization and ML provides a powerful approach to retrieving cropland inundation under the canopy. The growth of polarimetric L-band availability should enhance cropland inundation metrics beyond open water that are required for tracking water quantity at field scale over large areas.

3.
Neurotox Res ; 33(1): 199-212, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28470570

RESUMO

Reoccurring seasonal cyanobacterial harmful algal blooms (CHABs) persist in many waters, and recent work has shown links between CHAB and elevated risk of amyotrophic lateral sclerosis (ALS). Quantifying the exposure levels of CHAB as a potential risk factor for ALS is complicated by human mobility, potential pathways, and data availability. In this work, we develop phycocyanin concentration (i.e., CHAB exposure) maps using satellite remote sensing across northern New England to assess relationships with ALS cases using a spatial epidemiological approach. Strategic semi-analytical regression models integrated Landsat and in situ observations to map phycocyanin concentration (PC) for all lakes greater than 8 ha (n = 4117) across the region. Then, systematic versions of a Bayesian Poisson Log-linear model were fit to assess the mapped PC as a risk factor for ALS while accounting for model uncertainty and modifiable area unit problems. The satellite remote sensing of PC had strong overall ability to map conditions (adj. R2, 0.86; RMSE, 11.92) and spatial variability across the region. PC tended to be positively associated with ALS risk with the level of significance depending on fixed model components. Meta-analysis shows that when average PC exposure is 100 µg/L, an all model average odds ratio is 1.48, meaning there is about a 48% increase in average ALS risk. This research generated the first regionally comprehensive map of PC for thousands of lakes and integrated robust spatial uncertainty. The outcomes support the hypothesis that cyanotoxins increase the risk of ALS, which helps our understanding of the etiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Cianobactérias/química , Proliferação Nociva de Algas , Ficocianina/toxicidade , Esclerose Lateral Amiotrófica/epidemiologia , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Modelos Estatísticos , New England/epidemiologia , Ficocianina/química , Estudos Retrospectivos , Fatores de Risco , Comunicações Via Satélite
4.
Int J Environ Res Public Health ; 12(9): 11560-78, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26389930

RESUMO

Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophylla and phycocyanin concentrations; all sensors performed well with R² and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost.


Assuntos
Cianobactérias/isolamento & purificação , Proliferação Nociva de Algas/fisiologia , Lagos/microbiologia , Monitoramento Ambiental/métodos , Modelos Teóricos , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA