Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Epidemiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988237

RESUMO

The incubation period is of paramount importance in infectious disease epidemiology as it informs about the transmission potential of a pathogenic organism and helps to plan public health strategies to keep an epidemic outbreak under control. Estimation of the incubation period distribution from reported exposure times and symptom onset times is challenging as the underlying data is coarse. We develop a new Bayesian methodology using Laplacian-P-splines that provides a semi-parametric estimation of the incubation density based on a Langevinized Gibbs sampler. A finite mixture density smoother informs a set of parametric distributions via moment matching and an information criterion arbitrates between competing candidates. Algorithms underlying our method find a natural nest within the EpiLPS package, which has been extended to cover estimation of incubation times. Various simulation scenarios accounting for different levels of data coarseness are considered with encouraging results. Applications to real data on COVID-19, MERS and Mpox reveal results that are in alignment with what has been obtained in recent studies. The proposed flexible approach is an interesting alternative to classic Bayesian parametric methods for estimation of the incubation distribution.

2.
Proc Biol Sci ; 291(2027): 20241296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043233

RESUMO

The spread of viral respiratory infections is intricately linked to human interactions, and this relationship can be characterized and modelled using social contact data. However, many analyses tend to overlook the recurrent nature of these contacts. To bridge this gap, we undertake the task of describing individuals' contact patterns over time by characterizing the interactions made with distinct individuals during a week. Moreover, we gauge the implications of this temporal reconstruction on disease transmission by juxtaposing it with the assumption of random mixing over time. This involves the development of an age-structured individual-based model, using social contact data from a pre-pandemic scenario (the POLYMOD study) and a pandemic setting (the Belgian CoMix study), respectively. We found that accounting for the frequency of contacts impacts the number of new, distinct, contacts, revealing a lower total count than a naive approach, where contact repetition is neglected. As a consequence, failing to account for the repetition of contacts can result in an underestimation of the transmission probability given a contact, potentially leading to inaccurate conclusions when using mathematical models for disease control. We, therefore, underscore the necessity of acknowledging contact repetition when formulating effective public health strategies.


Assuntos
Pandemias , Infecções Respiratórias , Humanos , Infecções Respiratórias/transmissão , Infecções Respiratórias/epidemiologia , COVID-19/transmissão , COVID-19/epidemiologia , Bélgica/epidemiologia , Adulto , Busca de Comunicante , Modelos Teóricos , Adolescente , Criança , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Masculino , Pré-Escolar , Feminino
3.
BMC Public Health ; 24(1): 1171, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671366

RESUMO

BACKGROUND: When formulating and evaluating COVID-19 vaccination strategies, an emphasis has been placed on preventing severe disease that overburdens healthcare systems and leads to mortality. However, more conventional outcomes such as quality-adjusted life years (QALYs) and inequality indicators are warranted as additional information for policymakers. METHODS: We adopted a mathematical transmission model to describe the infectious disease dynamics of SARS-COV-2, including disease mortality and morbidity, and to evaluate (non)pharmaceutical interventions. Therefore, we considered temporal immunity levels, together with the distinct transmissibility of variants of concern (VOCs) and their corresponding vaccine effectiveness. We included both general and age-specific characteristics related to SARS-CoV-2 vaccination. Our scenario study is informed by data from Belgium, focusing on the period from August 2021 until February 2022, when vaccination for children aged 5-11 years was initially not yet licensed and first booster doses were administered to adults. More specifically, we investigated the potential impact of an earlier vaccination programme for children and increased or reduced historical adult booster dose uptake. RESULTS: Through simulations, we demonstrate that increasing vaccine uptake in children aged 5-11 years in August-September 2021 could have led to reduced disease incidence and ICU occupancy, which was an essential indicator for implementing non-pharmaceutical interventions and maintaining healthcare system functionality. However, an enhanced booster dose regimen for adults from November 2021 onward could have resulted in more substantial cumulative QALY gains, particularly through the prevention of elevated levels of infection and disease incidence associated with the emergence of Omicron VOC. In both scenarios, the need for non-pharmaceutical interventions could have decreased, potentially boosting economic activity and mental well-being. CONCLUSIONS: When calculating the impact of measures to mitigate disease spread in terms of life years lost due to COVID-19 mortality, we highlight the impact of COVID-19 on the health-related quality of life of survivors. Our study underscores that disease-related morbidity could constitute a significant part of the overall health burden. Our quantitative findings depend on the specific setup of the interventions under review, which is open to debate or should be contextualised within future situations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anos de Vida Ajustados por Qualidade de Vida , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/mortalidade , Bélgica/epidemiologia , Criança , Vacinas contra COVID-19/administração & dosagem , Pré-Escolar , Adulto , Fatores Etários , Modelos Teóricos , Adolescente , Programas de Imunização , Pessoa de Meia-Idade , Vacinação/estatística & dados numéricos , Idoso , Adulto Jovem
4.
PLoS Comput Biol ; 18(8): e1009980, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994497

RESUMO

Superspreading events play an important role in the spread of several pathogens, such as SARS-CoV-2. While the basic reproduction number of the original Wuhan SARS-CoV-2 is estimated to be about 3 for Belgium, there is substantial inter-individual variation in the number of secondary cases each infected individual causes-with most infectious individuals generating no or only a few secondary cases, while about 20% of infectious individuals is responsible for 80% of new infections. Multiple factors contribute to the occurrence of superspreading events: heterogeneity in infectiousness, individual variations in susceptibility, differences in contact behavior, and the environment in which transmission takes place. While superspreading has been included in several infectious disease transmission models, research into the effects of different forms of superspreading on the spread of pathogens remains limited. To disentangle the effects of infectiousness-related heterogeneity on the one hand and contact-related heterogeneity on the other, we implemented both forms of superspreading in an individual-based model describing the transmission and spread of SARS-CoV-2 in a synthetic Belgian population. We considered its impact on viral spread as well as on epidemic resurgence after a period of social distancing. We found that the effects of superspreading driven by heterogeneity in infectiousness are different from the effects of superspreading driven by heterogeneity in contact behavior. On the one hand, a higher level of infectiousness-related heterogeneity results in a lower risk of an outbreak persisting following the introduction of one infected individual into the population. Outbreaks that did persist led to fewer total cases and were slower, with a lower peak which occurred at a later point in time, and a lower herd immunity threshold. Finally, the risk of resurgence of an outbreak following a period of lockdown decreased. On the other hand, when contact-related heterogeneity was high, this also led to fewer cases in total during persistent outbreaks, but caused outbreaks to be more explosive in regard to other aspects (such as higher peaks which occurred earlier, and a higher herd immunity threshold). Finally, the risk of resurgence of an outbreak following a period of lockdown increased. We found that these effects were conserved when testing combinations of infectiousness-related and contact-related heterogeneity.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , COVID-19/epidemiologia , Controle de Doenças Transmissíveis/métodos , Surtos de Doenças , Humanos
5.
Emerg Infect Dis ; 28(8): 1699-1702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732195

RESUMO

We investigated the serial interval for SARS-CoV-2 Omicron BA.1 and Delta variants and observed a shorter serial interval for Omicron, suggesting faster transmission. Results indicate a relationship between empirical serial interval and vaccination status for both variants. Further assessment of the causes and extent of Omicron dominance over Delta is warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Bélgica/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2/genética , Vacinação/estatística & dados numéricos
6.
PLoS Comput Biol ; 17(3): e1008892, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780436

RESUMO

The SARS-CoV-2 pathogen is currently spreading worldwide and its propensity for presymptomatic and asymptomatic transmission makes it difficult to control. The control measures adopted in several countries aim at isolating individuals once diagnosed, limiting their social interactions and consequently their transmission probability. These interventions, which have a strong impact on the disease dynamics, can affect the inference of the epidemiological quantities. We first present a theoretical explanation of the effect caused by non-pharmaceutical intervention measures on the mean serial and generation intervals. Then, in a simulation study, we vary the assumed efficacy of control measures and quantify the effect on the mean and variance of realized generation and serial intervals. The simulation results show that the realized serial and generation intervals both depend on control measures and their values contract according to the efficacy of the intervention strategies. Interestingly, the mean serial interval differs from the mean generation interval. The deviation between these two values depends on two factors. First, the number of undiagnosed infectious individuals. Second, the relationship between infectiousness, symptom onset and timing of isolation. Similarly, the standard deviations of realized serial and generation intervals do not coincide, with the former shorter than the latter on average. The findings of this study are directly relevant to estimates performed for the current COVID-19 pandemic. In particular, the effective reproduction number is often inferred using both daily incidence data and the generation interval. Failing to account for either contraction or mis-specification by using the serial interval could lead to biased estimates of the effective reproduction number. Consequently, this might affect the choices made by decision makers when deciding which control measures to apply based on the value of the quantity thereof.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Modelos Estatísticos , Pandemias/prevenção & controle , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/transmissão , Biologia Computacional , Simulação por Computador , Humanos , Incidência , Prevalência , Processos Estocásticos , Fatores de Tempo
7.
PLoS Comput Biol ; 17(3): e1008688, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690626

RESUMO

Outbreaks of SARS-CoV-2 are threatening the health care systems of several countries around the world. The initial control of SARS-CoV-2 epidemics relied on non-pharmaceutical interventions, such as social distancing, teleworking, mouth masks and contact tracing. However, as pre-symptomatic transmission remains an important driver of the epidemic, contact tracing efforts struggle to fully control SARS-CoV-2 epidemics. Therefore, in this work, we investigate to what extent the use of universal testing, i.e., an approach in which we screen the entire population, can be utilized to mitigate this epidemic. To this end, we rely on PCR test pooling of individuals that belong to the same households, to allow for a universal testing procedure that is feasible with the limited testing capacity. We evaluate two isolation strategies: on the one hand pool isolation, where we isolate all individuals that belong to a positive PCR test pool, and on the other hand individual isolation, where we determine which of the individuals that belong to the positive PCR pool are positive, through an additional testing step. We evaluate this universal testing approach in the STRIDE individual-based epidemiological model in the context of the Belgian COVID-19 epidemic. As the organisation of universal testing will be challenging, we discuss the different aspects related to sample extraction and PCR testing, to demonstrate the feasibility of universal testing when a decentralized testing approach is used. We show through simulation, that weekly universal testing is able to control the epidemic, even when many of the contact reductions are relieved. Finally, our model shows that the use of universal testing in combination with stringent contact reductions could be considered as a strategy to eradicate the virus.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Epidemias/prevenção & controle , SARS-CoV-2 , Bélgica/epidemiologia , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Teste de Ácido Nucleico para COVID-19/tendências , Biologia Computacional , Simulação por Computador , Busca de Comunicante/métodos , Busca de Comunicante/estatística & dados numéricos , Busca de Comunicante/tendências , Reações Falso-Negativas , Características da Família , Estudos de Viabilidade , Humanos , Programas de Rastreamento/métodos , Programas de Rastreamento/estatística & dados numéricos , Programas de Rastreamento/tendências , Modelos Estatísticos , Quarentena/métodos , Quarentena/estatística & dados numéricos , Quarentena/tendências , Viagem
8.
BMC Med ; 18(1): 191, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586336

RESUMO

BACKGROUND: Current outbreaks of COVID-19 are threatening the health care systems of several countries around the world. Control measures, based on isolation, contact tracing, and quarantine, can decrease and delay the burden of the ongoing epidemic. With respect to the ongoing COVID-19 epidemic, recent modeling work shows that these interventions may be inadequate to control local outbreaks, even when perfect isolation is assumed. The effect of infectiousness prior to symptom onset combined with asymptomatic infectees further complicates the use of contact tracing. We aim to study whether antivirals, which decrease the viral load and reduce infectiousness, could be integrated into control measures in order to augment the feasibility of controlling the epidemic. METHODS: Using a simulation-based model of viral transmission, we tested the efficacy of different intervention measures to control local COVID-19 outbreaks. For individuals that were identified through contact tracing, we evaluate two procedures: monitoring individuals for symptoms onset and testing of individuals. Additionally, we investigate the implementation of an antiviral compound combined with the contact tracing process. RESULTS: For an infectious disease in which asymptomatic and presymptomatic infections are plausible, an intervention measure based on contact tracing performs better when combined with testing instead of monitoring, provided that the test is able to detect infections during the incubation period. Antiviral drugs, in combination with contact tracing, quarantine, and isolation, result in a significant decrease of the final size and the peak incidence, and increase the probability that the outbreak will fade out. CONCLUSION: In all tested scenarios, the model highlights the benefits of control measures based on the testing of traced individuals. In addition, the administration of an antiviral drug, together with quarantine, isolation, and contact tracing, is shown to decrease the spread of the epidemic. This control measure could be an effective strategy to control local and re-emerging outbreaks of COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Surtos de Doenças/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Betacoronavirus , COVID-19 , Simulação por Computador , Busca de Comunicante , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Incidência , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Quarentena , SARS-CoV-2
9.
Euro Surveill ; 25(17)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32372755

RESUMO

BackgroundEstimating key infectious disease parameters from the coronavirus disease (COVID-19) outbreak is essential for modelling studies and guiding intervention strategies.AimWe estimate the generation interval, serial interval, proportion of pre-symptomatic transmission and effective reproduction number of COVID-19. We illustrate that reproduction numbers calculated based on serial interval estimates can be biased.MethodsWe used outbreak data from clusters in Singapore and Tianjin, China to estimate the generation interval from symptom onset data while acknowledging uncertainty about the incubation period distribution and the underlying transmission network. From those estimates, we obtained the serial interval, proportions of pre-symptomatic transmission and reproduction numbers.ResultsThe mean generation interval was 5.20 days (95% credible interval (CrI): 3.78-6.78) for Singapore and 3.95 days (95% CrI: 3.01-4.91) for Tianjin. The proportion of pre-symptomatic transmission was 48% (95% CrI: 32-67) for Singapore and 62% (95% CrI: 50-76) for Tianjin. Reproduction number estimates based on the generation interval distribution were slightly higher than those based on the serial interval distribution. Sensitivity analyses showed that estimating these quantities from outbreak data requires detailed contact tracing information.ConclusionHigh estimates of the proportion of pre-symptomatic transmission imply that case finding and contact tracing need to be supplemented by physical distancing measures in order to control the COVID-19 outbreak. Notably, quarantine and other containment measures were already in place at the time of data collection, which may inflate the proportion of infections from pre-symptomatic individuals.


Assuntos
Infecções Assintomáticas/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Betacoronavirus , COVID-19 , China/epidemiologia , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Quarentena , SARS-CoV-2 , Singapura/epidemiologia , Fatores de Tempo
10.
Proc Biol Sci ; 285(1893): 20182201, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963910

RESUMO

Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts, and thus easily spread within households. Epidemic models, used to gain insight into infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now, there has been no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) from 2010 to 2011. We analysed data from 318 households totalling 1266 individuals with household sizes ranging from two to seven members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between older siblings and between father and child are smaller than for any other pair. The epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulations. However, ignoring the contact density when inferring based on an epidemic model will result in biased estimates of within-household transmission rates. Further research regarding the implementation of within-household contact networks in epidemic models is necessary.


Assuntos
Doenças Transmissíveis/transmissão , Características da Família , Influenza Humana/transmissão , Relações Interpessoais , Rede Social , Bélgica , Humanos , Modelos Teóricos
12.
Epidemics ; 44: 100701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379776

RESUMO

Mathematical modelling studies have shown that repetitive screening can be used to mitigate SARS-CoV-2 transmission in primary schools while keeping schools open. However, not much is known about how transmission progresses within schools and whether there is a risk of importation to households. During the academic year 2020-2021, a prospective surveillance study using repetitive screening was conducted in a primary school and associated households in Liège (Belgium). SARS-CoV-2 screening was performed via throat washing either once or twice a week. We used genomic and epidemiological data to reconstruct the observed school outbreaks using two different models. The outbreaker2 model combines information on the generation time and contact patterns with a model of sequence evolution. For comparison we also used SCOTTI, a phylogenetic model based on the structured coalescent. In addition, we performed a simulation study to investigate how the accuracy of estimated positivity rates in a school depends on the proportion of a school that is sampled in a repetitive screening strategy. We found no difference in SARS-CoV-2 positivity between children and adults and children were not more often asymptomatic compared to adults. Both models for outbreak reconstruction revealed that transmission occurred mainly within the school environment. Uncertainty in outbreak reconstruction was lowest when including genomic as well as epidemiological data. We found that observed weekly positivity rates are a good approximation to the true weekly positivity rate, especially in children, even when only 25% of the school population is sampled. These results indicate that, in addition to reducing infections as shown in modelling studies, repetitive screening in school settings can lead to a better understanding of the extent of transmission in schools during a pandemic and importation risk at the community level.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , SARS-CoV-2/genética , Filogenia , Estudos Prospectivos , COVID-19/epidemiologia , Genômica , Surtos de Doenças , Instituições Acadêmicas
13.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787310

RESUMO

SARS-CoV-2 remains a worldwide emergency. While vaccines have been approved and are widely administered, there is an ongoing debate whether children should be vaccinated or prioritized for vaccination. Therefore, in order to mitigate the spread of more transmissible SARS-CoV-2 variants among children, the use of non-pharmaceutical interventions is still warranted. We investigate the impact of different testing strategies on the SARS-CoV-2 infection dynamics in a primary school environment, using an individual-based modelling approach. Specifically, we consider three testing strategies: (1) symptomatic isolation, where we test symptomatic individuals and isolate them when they test positive, (2) reactive screening, where a class is screened once one symptomatic individual was identified, and (3) repetitive screening, where the school in its entirety is screened on regular time intervals. Through this analysis, we demonstrate that repetitive testing strategies can significantly reduce the attack rate in schools, contrary to a reactive screening or a symptomatic isolation approach. However, when a repetitive testing strategy is in place, more cases will be detected and class and school closures are more easily triggered, leading to a higher number of school days lost per child. While maintaining the epidemic under control with a repetitive testing strategy, we show that absenteeism can be reduced by relaxing class and school closure thresholds.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Humanos , Instituições Acadêmicas
14.
Front Microbiol ; 13: 889643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722303

RESUMO

Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics' historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.

15.
Sci Rep ; 11(1): 14107, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238978

RESUMO

The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, [Formula: see text], while acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we find that variance estimates may be biased when there is a substantial amount of heterogeneity, and that selection of the most accurate distribution from a set of distributions is important. In addition we find that the number of secondary cases for two of the three COVID-19 datasets is better described by a Poisson-lognormal distribution.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , SARS-CoV-2 , COVID-19/epidemiologia , Simulação por Computador , Hong Kong/epidemiologia , Humanos , Índia/epidemiologia , Distribuição de Poisson , Ruanda/epidemiologia
16.
medRxiv ; 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34013290

RESUMO

The number of secondary cases is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the number of secondary cases is often modelled using a negative binomial distribution. However, this may not be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the offspring mean and its overdispersion when the data generating distribution is different from the one used for inference. We find that overdispersion estimates may be biased when there is a substantial amount of heterogeneity, and that the use of other distributions besides the negative binomial should be considered. We revisit three previously analysed COVID-19 datasets and quantify the proportion of cases responsible for 80% of transmission, p 80% , while acknowledging the variation arising from the assumed offspring distribution. We find that the number of secondary cases for these datasets is better described by a Poisson-lognormal distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA