Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Differentiation ; 134: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37690144

RESUMO

Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an in vitro system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.


Assuntos
Esôfago de Barrett , Carcinoma de Células Escamosas , Humanos , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Células CACO-2 , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Expressão Ectópica do Gene , Metaplasia , Fenótipo
2.
Proc Biol Sci ; 289(1966): 20212338, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016538

RESUMO

Ongoing recovery of native predators has the potential to alter species interactions, with community and ecosystem wide implications. We estimated the co-occurrence of three species of conservation and management interest from a multi-species citizen science camera trap survey. We demonstrate fundamental differences in novel and coevolved predator-prey interactions that are mediated by habitat. Specifically, we demonstrate that anthropogenic habitat modification had no influence on the expansion of the recovering native pine marten in Ireland, nor does it affect the predator's suppressive influence on an invasive prey species, the grey squirrel. By contrast, the direction of the interaction between the pine marten and a native prey species, the red squirrel, is dependent on habitat. Pine martens had a positive influence on red squirrel occurrence at a landscape scale, especially in native broadleaf woodlands. However, in areas dominated by non-native conifer plantations, the pine marten reduced red squirrel occurrence. These findings suggest that following the recovery of a native predator, the benefits of competitive release are spatially structured and habitat-specific. The potential for past and future landscape modification to alter established interactions between predators and prey has global implications in the context of the ongoing recovery of predator populations in human-modified landscapes.


Assuntos
Ecossistema , Mustelidae , Animais , Florestas , Humanos , Espécies Introduzidas , Comportamento Predatório , Sciuridae
3.
Mol Ecol ; 31(3): 993-1006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775636

RESUMO

Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.


Assuntos
Raposas , Variação Genética , Animais , Teorema de Bayes , Europa (Continente) , Raposas/genética , Humanos , Filogenia , Filogeografia
4.
Biochem Soc Trans ; 49(2): 579-590, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33666218

RESUMO

Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic ß-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to ß-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate ß-cells.


Assuntos
Reprogramação Celular/genética , Hepatócitos/metabolismo , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Fatores de Transcrição/genética , Animais , Transdiferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Fígado/citologia , Pâncreas/citologia , Fatores de Transcrição/metabolismo
5.
Biochem Biophys Res Commun ; 503(3): 1633-1640, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30057318

RESUMO

The pancreas and liver are closely related developmentally and trans-differentiation of cells from one tissue into the cells of the other has been documented to occur after injury or exposure to selected growth factors or glucocorticoid hormones. To generate a readily-expandable source of human hepatocyte-like (H-13) cells, the human pancreatic adenocarcinoma cell (HPAC) line was stably transfected with a construct encoding the variant 2 hepatocyte nuclear factor 4 α (HNF4α) using a piggyBac vector and transient expression of a transposase. Through induction of transgene HNF4α regulated via an upstream glucocorticoid response element in combination with existing modulating effects of glucocorticoid, H-13 cells were converted into quantitatively similar hepatocyte-like (H-13/H) cells based on expression of a variety of hepatocyte proteins. H-13/H cells also demonstrated the ability to store glycogen and lipids. These data provide proof of concept that regulated expression of genes associated with hepatocyte phenotype could be used to generate quantitatively functional human hepatocyte-like cells using a readily expandable cell source and simple culture protocol. This approach would have utility in Toxicology and Hepatology research.


Assuntos
Glucocorticoides/farmacologia , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Perfilação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Pâncreas/metabolismo , Células Tumorais Cultivadas
6.
J Memb Sci ; 565: 425-438, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393423

RESUMO

Herein we describe the manufacture and characterisation of biocompatible, porous polystyrene membranes, suitable for cell culture. Though widely used in traditional cell culture, polystyrene has not been used as a hollow fibre membrane due to its hydrophobicity and non-porous structure. Here, we use microcrystalline sodium chloride (4.7 ±â€¯1.3 µm) to control the porosity of polystyrene membranes and oxygen plasma surface treatment to reduce hydrophobicity. Increased porogen concentration correlates to increased surface pore density, macrovoid formation, gas permeability and mean pore size, but a decrease in mechanical strength. For tissue engineering applications, membranes spun from casting solutions containing 40% (w/w) sodium chloride represent a compromise between strength and permeability, having surface pore density of 208.2 ±â€¯29.7 pores/mm2, mean surface pore size of 2.3 ±â€¯0.7 µm, and Young's modulus of 115.0 ±â€¯8.2 MPa. We demonstrate the biocompatibility of the material with an exciting cell line-media combination: transdifferentiation of the AR42J-B13 pancreatic cell line to hepatocyte-like cells. Treatment of AR42J-B13 with dexamethasone/oncostatin-M over 14 days induces transdifferentiation towards a hepatic phenotype. There was a distinct loss of the pancreatic phenotype, shown through loss of expression of the pancreatic marker amylase, and gain of the hepatic phenotype, shown through induction of expression of the hepatic markers transferrin, carbamoylphosphate synthetase and glutamine synthetase. The combination of this membrane fabrication method and demonstration of biocompatibility of the transdifferentiated hepatocytes provides a novel, superior, alternative design for in vitro liver models and bioartificial liver devices.

7.
Differentiation ; 93: 39-49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27875772

RESUMO

Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an origin of Barrett's metaplasia from the oesophageal epithelium.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Fator de Transcrição CDX2/genética , Neoplasias Esofágicas/genética , Fator 4 Nuclear de Hepatócito/genética , Adenocarcinoma/patologia , Adulto , Animais , Esôfago de Barrett/patologia , Biópsia , Epitélio/patologia , Neoplasias Esofágicas/patologia , Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/biossíntese , Técnicas de Cultura de Órgãos
8.
Ann Bot ; 117(4): 541-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26929202

RESUMO

BACKGROUND AND AIMS: Studies on oaks (Quercus spp.) have often been hampered by taxonomic confusion, a situation further compounded by the occurrence of extensive interspecific hybridization. In the present study, a combination of genetic and morphological analyses was used to examine sympatric populations of Q. petraea and Q. robur at the north-western edge of their ranges in Northern Ireland, since it had previously been suggested that hybridization could facilitate the apparent rapid, long-distance dispersal of oaks following the glaciations. METHODS: Samples were collected from 24 sites across Northern Ireland that had been previously designated as ancient or semi-natural woodland. Genotypes were obtained from a total of 950 trees using 12 nuclear microsatellite loci, and admixture coefficients were calculated based on a Bayesian clustering approach. Individuals were also classified as Q. petraea,Q. robur or hybrids based on two objective morphometric characters shown previously to delineate pure individuals effectively. Genetically 'pure' individuals of both species, as defined by the Bayesian clustering, were also genotyped for five chloroplast microsatellites. KEY RESULTS: Genetic and morphological analyses both indicated the presence of pure individuals of both species, as well as a continuum of intermediates. There was a good agreement between the molecular and morphological classification, with a generally clear separation between pure individuals. CONCLUSIONS: Despite millennia of hybridization and introgression, genetically and morphologically pure individuals of both Q. petraea and Q. robur can be found at the edge of their range, where both species occur sympatrically. The high proportion of individuals exhibiting introgression compared with previous studies may reflect the historical role of hybridization in facilitating dispersal following the glaciations. This is further supported by the significantly higher chloroplast diversity in Q. robur compared with Q. petraea.


Assuntos
Variação Genética , Quercus/anatomia & histologia , Quercus/genética , Simpatria/genética , Núcleo Celular/genética , Cloroplastos/genética , Geografia , Especificidade da Espécie
9.
Biochem Soc Trans ; 42(3): 609-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24849227

RESUMO

Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.


Assuntos
Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Neoplasias/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
10.
Bioorg Med Chem Lett ; 24(13): 2815-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24835628

RESUMO

We report the synthesis and biological evaluation of three analogues of the natural product (+)-grandifloracin (+)-1. All three analogues exhibit enhanced antiproliferative activity against PANC-1 and HT-29 cells compared to the natural product. The retention of activity in an analogue lacking the enone functional group, 9, implies this structural element is not an essential part of the (+)-grandifloracin pharmacophore.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Cetonas/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Uvaria/química
11.
Biotechnol Lett ; 36(12): 2357-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25064452

RESUMO

Hollow fibre membrane bioreactors (HFB) provide a novel approach towards tissue engineering applications in the field of regenerative medicine. For adherent cell types, HFBs offer an in vivo-like microenvironment as each fibre replicates a blood capillary and the mass transfer rate across the wall is independent from the shear stresses experienced by the cell. HFB also possesses the highest surface area to volume ratio of all bioreactor configurations. In theory, these factors enable a high quantity of the desired cellular product with less population variation, and favourable operating costs. Experimental analyses of different cell types and bioreactor designs show encouraging steps towards producing a clinically relevant device. This review discusses the basic HFB design for cell expansion and in vitro models; compares data produced on commercially available systems and addresses the operational differences between theory and practice. HFBs are showing some potential for mammalian cell culture but further work is needed to fully understand the complexities of cell culture in HFBs and how best to achieve the high theoretical cell yields.


Assuntos
Reatores Biológicos , Engenharia Tecidual/métodos , Animais , Humanos , Mamíferos , Membranas , Medicina Regenerativa/métodos
12.
J Cell Sci ; 124(Pt 12): 1992-2000, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610099

RESUMO

The use of small molecules to 'chemically direct' differentiation represents a powerful approach to promote specification of embryonic stem cells (ESCs) towards particular functional cell types for use in regenerative medicine and pharmaceutical applications. Here, we demonstrate a novel route for chemically directed differentiation of human ESCs (hESCs) into definitive endoderm (DE) exploiting a selective small-molecule inhibitor of glycogen synthase kinase 3 (GSK-3). This GSK-3 inhibitor, termed 1m, when used as the only supplement to a chemically defined feeder-free culture system, effectively promoted differentiation of ESC lines towards primitive streak (PS), mesoderm and DE. This contrasts with the role of GSK-3 in murine ESCs, where GSK-3 inhibition promotes pluripotency. Interestingly, 1m-mediated induction of differentiation involved transient NODAL expression and Nodal signalling. Prolonged treatment of hESCs with 1m resulted in the generation of a population of cells displaying hepatoblast characteristics, that is expressing α-fetoprotein and HNF4α. Furthermore, 1m-induced DE had the capacity to mature and generate hepatocyte-like cells capable of producing albumin. These findings describe, for the first time, the utility of GSK-3 inhibition, in a chemically directed approach, to a method of DE generation that is robust, potentially scalable and applicable to different hESC lines.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/citologia , Endoderma/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Ativinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/enzimologia , Endoderma/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Proteína Nodal/metabolismo , Transdução de Sinais
13.
PLoS Genet ; 6(1): e1000816, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20084116

RESUMO

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Assuntos
Camundongos/genética , Camundongos/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos/embriologia , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Wnt , Proteína Wnt3 , beta Catenina/genética
14.
Bioessays ; 32(10): 881-4, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20803505

RESUMO

Cell therapy means treating diseases with the body's own cells. One of the cell types most in demand for therapeutic purposes is the pancreatic ß-cell. This is because diabetes is one of the major healthcare problems in the world. Diabetes can be treated by islet transplantation but the major limitation is the shortage of organ donors. To overcome the shortfall in donors, alternative sources of pancreatic ß-cells must be found. Potential sources include embryonic or adult stem cells or, from existing ß-cells. There is now a startling new addition to this list of therapies: the pancreatic α-cell. Thorel and colleagues recently showed that under circumstances of extreme pancreatic ß-cell loss, α-cells may serve to replenish the insulin-producing compartment. This conversion of α-cells to ß-cells represents an example of transdifferentiation. Understanding the molecular basis for transdifferentiation may help to enhance the generation of ß-cells for the treatment of diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Diabetes Mellitus/terapia , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular , Linhagem da Célula , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Pâncreas/citologia , Pâncreas/cirurgia
15.
Ecotoxicology ; 21(5): 1325-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22447471

RESUMO

We compared capture rates and exposure to SGARs of wood mice (Apodemus sylvaticus) and house mice (Mus domesticus) in autumn/winter on farms that currently used, had previously used, and never used SGARs. 6-10 weeks after baiting programmes began, 15 % of 55 wood mice and 33 % of 12 house mice had detectable liver SGAR residues. Wood mice with residues occurred on farms not using rodenticides, reflecting the high mobility of these animals, and four had multiple liver residues, possibly due to cross-contamination of baits. The winter decline in wood mouse numbers was similar on farms that did and did not use SGARs, suggesting little long-term impact of SGARs on populations on farms. Our results indicate residual levels of rodenticides will be ever present in small mammal prey across the agricultural landscape unless all farms in a locality cease application. The implications for secondary exposure and poisoning of predators are discussed.


Assuntos
Monitoramento Ambiental , Camundongos/metabolismo , Murinae/metabolismo , Rodenticidas/análise , Animais , Anticoagulantes/análise , Anticoagulantes/toxicidade , Exposição Ambiental/efeitos adversos , Feminino , Cadeia Alimentar , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Medição de Risco
16.
Cell Mol Gastroenterol Hepatol ; 13(5): 1530-1553.e4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35032693

RESUMO

BACKGROUND & AIMS: Pancreatic islet ß-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS: We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS: We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS: In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Células Epiteliais/metabolismo , Vesícula Biliar/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD
17.
J Clin Invest ; 118(11): 3629-38, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18846252

RESUMO

Factors that promote pancreatic beta cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate beta cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls beta cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged beta cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in beta cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR.


Assuntos
Insulinoma/metabolismo , Pâncreas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Tamanho Celular , Cruzamentos Genéticos , Modelos Animais de Doenças , Insulina/sangue , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Proteínas Quinases S6 Ribossômicas/genética
18.
Gastroenterology ; 138(7): 2519-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20178796

RESUMO

BACKGROUND & AIMS: The appearance of hepatic foci in pancreas has been well-documented in animal experiments and in patients with pancreatic cancer. We previously demonstrated that transdifferentiation of pancreatic exocrine cells to hepatocytes required members of the CCAAT enhancer binding protein family. Although the molecular basis of hepatic transdifferentiation is understood, the early cellular events remain to be defined. METHODS: Dexamethasone and oncostatin M were used to induce transdifferentiation of primary cultures of mouse acinar cells and exocrine cell lines into hepatocytes. Fluorescent-activated cell sorting was used to identify intermediate cell types and side-population characteristics. Cre-loxP-based lineage tracing was used to investigate whether acinar cells contribute directly to hepatocytes via intermediates that express adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2). RESULTS: Lineage tracing studies showed that hepatocytes were derived directly from pancreatic cells via ABCG2-expressing intermediates. Exposure of cells to insulin increased Akt phosphorylation, ABCG2 expression, and hepatic transdifferentiation. Inhibition of the phosphoinositide 3-kinase pathway, through addition of LY294002 or overexpression of a dominant-negative form of Akt, was sufficient to prevent transdifferentiation. When ABCG2-expressing cells were incubated with glucagon-like-peptide 1 or epidermal growth factor, the intermediate cells could differentiate into insulin-producing beta-like cells. CONCLUSIONS: The phosphoinositide 3-kinase pathway is important in the transdifferentiation of acinar cells to hepatocytes and those hepatocytes arise from acinar cells via ABCG2-expressing intermediates. Furthermore, ABCG2-expressing cells are multipotent and able to differentiate into hepatocytes and insulin-producing beta cells.


Assuntos
Linhagem da Célula , Hepatócitos/citologia , Pâncreas Exócrino/citologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Diferenciação Celular , Células Cultivadas , Dexametasona/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Insulina/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Transdução de Sinais
19.
Cytotherapy ; 13(2): 193-200, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20662611

RESUMO

BACKGROUND AIMS: Diabetes type I is an autoimmune disease characterized by the destruction of pancreatic insulin-producing (beta-) cells and resulting in external insulin dependence for life. Islet transplantation represents a potential treatment for diabetes but there is currently a shortage of suitable organs donors. To augment the supply of donors, different strategies are required to provide a potential source of beta-cells. These sources include embryonic and adult stem cells as well as differentiated cell types. The main goal of this study was to induce the transdifferentiation (or conversion of one type cell to another) of human hepatoma cells (HepG2 cells) to insulin-expressing cells based on the exposure of HepG2 cells to an extract of rat insulinoma cells (RIN). METHODS: HepG2 cells were first transiently permeabilized with Streptolysin O and then exposed to a cell extract obtained from RIN cells. Following transient exposure to the RIN extract, the HepG2 cells were cultured for 3 weeks. RESULTS: Acquisition of the insulin-producing cell phenotype was determined on the basis of (i) morphologic and (ii) ultrastructural observations, (iii) immunologic detection and (iv) reverse transcription (RT)-polymerase chain reaction (PCR) analysis. CONCLUSIONS: This study supports the use of cell extract as a feasible method for achieve transdifferentiation of hepatic cells to insulin-producing cells.


Assuntos
Transdiferenciação Celular , Células Hep G2/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Insulina/biossíntese , Insulinoma , Animais , Proteínas de Bactérias , Extratos Celulares/farmacologia , Células Cultivadas , Imunofluorescência , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Permeabilidade , Fenótipo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estreptolisinas
20.
J Environ Manage ; 92(6): 1503-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21272991

RESUMO

Usage of anticoagulant rodenticides (ARs) is an integral component of modern agriculture and is essential for the control of commensal rodent populations. However, the extensive deployment of ARs has led to widespread exposure of a range of non-target predatory birds and mammals to some compounds, in particular the second-generation anticoagulant rodenticides (SGARs). As a result, there has been considerable effort placed into devising voluntary best practice guidelines that increase the efficacy of rodent control and reduce the risk of non-target exposure. Currently, there is limited published information on actual practice amongst users or implementation of best practice. We assessed the behaviour of a typical group of users using an on-farm questionnaire survey. Most baited for rodents every year using SGARs. Most respondents were apparently aware of the risks of non-target exposure and adhered to some of the best practice recommendations but total compliance was rare. Our questionnaire revealed that users of first generation anticoagulant rodenticides rarely protected or checked bait stations, and so took little effort to prevent primary exposure of non-targets. Users almost never searched for and removed poisoned carcasses and many baited for prolonged periods or permanently. These factors are all likely to enhance the likelihood of primary and secondary exposure of non-target species.


Assuntos
Agricultura/métodos , Anticoagulantes/toxicidade , Exposição Ambiental/estatística & dados numéricos , Rodenticidas/toxicidade , Benchmarking , Humanos , Irlanda do Norte , Estações do Ano , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA