Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38670804

RESUMO

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Neurônios GABAérgicos , Magnetoencefalografia , Humanos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Masculino , Feminino , Adulto , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Adulto Jovem , Inibição Neural/fisiologia , Inibição Neural/efeitos dos fármacos , Estimulação Acústica
2.
PLoS Comput Biol ; 17(1): e1008668, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513135

RESUMO

The connection between stimulus perception and time perception remains unknown. The present study combines human and rat psychophysics with sensory cortical neuronal firing to construct a computational model for the percept of elapsed time embedded within sense of touch. When subjects judged the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing stimulus intensity led to increasing perceived duration. Symmetrically, increasing vibration duration led to increasing perceived intensity. We modeled real spike trains recorded from vibrissal somatosensory cortex as input to dual leaky integrators-an intensity integrator with short time constant and a duration integrator with long time constant-generating neurometric functions that replicated the actual psychophysical functions of rats. Returning to human psychophysics, we then confirmed specific predictions of the dual leaky integrator model. This study offers a framework, based on sensory coding and subsequent accumulation of sensory drive, to account for how a feeling of the passage of time accompanies the tactile sensory experience.


Assuntos
Modelos Neurológicos , Psicofísica/métodos , Córtex Somatossensorial/fisiologia , Percepção do Tempo/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Biologia Computacional , Humanos , Masculino , Ratos , Ratos Wistar , Análise e Desempenho de Tarefas , Vibração , Vibrissas/fisiologia , Adulto Jovem
3.
Neurosci Biobehav Rev ; 149: 105161, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028580

RESUMO

Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal circuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates.


Assuntos
Percepção do Tato , Tato , Animais , Humanos , Tato/fisiologia , Roedores , Percepção do Tato/fisiologia , Córtex Somatossensorial/fisiologia , Cognição
4.
Neuron ; 109(22): 3663-3673.e6, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34508666

RESUMO

To assess the role of dorsolateral striatum (DLS) in time coding, we recorded neuronal activity in rats tasked with comparing the durations of two sequential vibrations. Bayesian decoding of population activity revealed a representation of the unfolding of the trial across time. However, further analyses demonstrated a distinction between the encoding of trial time and perceived time. First, DLS did not show a privileged representation of the stimulus durations compared with other time spans. Second, higher intensity vibrations were perceived as longer; however, time decoded from DLS was unaffected by vibration intensity. Third, DLS did not encode stimulus duration differently on correct versus incorrect trials. Finally, in rats trained to compare the intensities of two sequential vibrations, stimulus duration was encoded even though it was a perceptually irrelevant feature. These findings lead us to posit that temporal information is inherent to DLS activity irrespective of the rat's ongoing percept.


Assuntos
Corpo Estriado , Neurônios , Animais , Teorema de Bayes , Corpo Estriado/fisiologia , Neostriado , Neurônios/fisiologia , Ratos , Tempo
5.
Neuron ; 111(4): 585-594, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796328
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA