Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 47(12): 2943-2946, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709021

RESUMO

A binary-lens-embedded photonic crystal (B-LEPC) was designed for operation at 1550 nm and fabricated by multiphoton lithography. The lens is binary in the sense that optical path difference is generated using unit cells having just two distinct fill factors. The unit cells have a "rod-in-wall" structure that exhibits three-dimensional self-collimation. Simulations show that self-collimation forces light to move through the device without diffracting or focusing, even as the wavefront is reshaped by the lensing region. Upon exiting the device, the curved wavefront causes the light to focus. The thickness of a B-LEPC was reduced threefold by wrapping phase in the style of a Fresnel lens. Embedding a faster-varying phase profile enables tighter focusing, and numerical aperture NA = 0.59 was demonstrated experimentally.

2.
Sci Rep ; 12(1): 16146, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167731

RESUMO

Spatially Variant Photonic Crystals (SVPCs) have shown the ability to control the propagation and direction of light in the near-infrared spectrum. Using a novel approach for simplified modeling and fabrication techniques, we designed unique, spatially-varied, unit-cell structures to develop photonic crystals that maintain self-collimation and direction of light for desired beam tuning applications. The finite-difference time-domain technique is used to predict the self-collimation and beam-bending capabilities of our SVPCs. These SVPC designs and the simulation results are verified in laboratory testing. The experimental evidence shows that two-dimensional SVPCs can achieve self-collimation and direct light through sharp bends. The simplicity and quality of these designs show their potential for widespread implementation in modern devices. These SVPCs will serve as a unique solution to optical systems for optical computing, multiplexing, data transfer, and more.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA