Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 114: 371-382, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683961

RESUMO

Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.

2.
J Pain ; 24(9): 1731-1743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354157

RESUMO

The ability to accurately predict pain is an adaptive feature in healthy individuals. However, in chronic pain, this mechanism may be selectively impaired and can lead to increased anxiety and excessive avoidance behavior. Recently, we reported the first data demonstrating brain activation in fibromyalgia (FM) patients during conditioned pain responses, in which FM patients revealed a tendency to form new pain-related associations rather than extinguishing irrelevant ones. The aim of the present study was to extend our previous analysis, to elucidate potential neural divergences between subjects with FM (n = 65) and healthy controls (HCs) (n = 33) during anticipatory information (ie, prior to painful stimulus onset). Using functional magnetic resonance imaging (fMRI), the current analyses include 1) a congruently cued paradigm of low and high pain predictive cues, followed by 2) an incongruently cued paradigm where low and high pain predictive cues were followed by an identical mid-intensity painful pressure. During incongruently cued high-pain associations, FM exhibited reduced left dorsolateral prefrontal cortex (dlPFC) activation compared to HCs, which was followed by an altered subsequent pain experience in FM, as patients continued to rate the following painful stimuli as high, even though the pressure had been lowered. During congruently cued low pain anticipation, FM exhibited decreased right dlPFC activation compared to HCs, as well as decreased brain connectivity between brain regions implicated in cognitive modulation of pain (dlPFC) and nociceptive processing (primary somatosensory cortex/postcentral gyrus [S1] and supplementary motor area [SMA]/midcingulate cortex [MCC]). These results may reflect an important feature of validating low pain expectations in HCs and help elucidate behavioral reports of impaired safety processing in FM patients. PERSPECTIVE: FM exhibited a stronger conditioned pain response for high-pain associations, which was associated with reduced dlPFC activation during the incongruent trial. During (congruent and incongruent) low pain associations, FM dlPFC brain activation remained indifferent. Imbalances in threat and safety pain perception may be an important target for psychotherapeutic interventions.


Assuntos
Dor Crônica , Fibromialgia , Humanos , Fibromialgia/complicações , Fibromialgia/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral , Percepção da Dor/fisiologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/patologia
3.
Pain ; 164(8): 1828-1840, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943275

RESUMO

ABSTRACT: Transferring fibromyalgia patient immunoglobulin G (IgG) to mice induces pain-like behaviour, and fibromyalgia IgG binds mouse and human satellite glia cells (SGCs). These findings suggest that autoantibodies could be part of fibromyalgia pathology. However, it is unknown how frequently fibromyalgia patients have anti-SGC antibodies and how anti-SGC antibodies associate with disease severity. Here, we quantified serum or plasma anti-SGC IgG levels in 2 fibromyalgia cohorts from Sweden and Canada using an indirect immunofluorescence murine cell culture assay. Fibromyalgia serum IgG binding to human SGCs in human dorsal root ganglia tissue sections was also assessed by immunofluorescence. In the cell culture assay, anti-SGC IgG levels were increased in both fibromyalgia cohorts compared with control group. Elevated anti-SGC IgG was associated with higher levels of self-reported pain in both cohorts, and higher fibromyalgia impact questionnaire scores and increased pressure sensitivity in the Swedish cohort. Anti-SGC IgG levels were not associated with fibromyalgia duration. Swedish fibromyalgia (FM) patients were clustered into FM-severe and FM-mild groups, and the FM-severe group had elevated anti-SGC IgG compared with the FM-mild group and control group. Anti-SGC IgG levels detected in culture positively correlated with increased binding to human SGCs. Moreover, the FM-severe group had elevated IgG binding to human SGCs compared with the FM-mild and control groups. These results demonstrate that a subset of fibromyalgia patients have elevated levels of anti-SGC antibodies, and the antibodies are associated with more severe fibromyalgia symptoms. Screening fibromyalgia patients for anti-SGC antibodies could provide a path to personalized treatment options that target autoantibodies and autoantibody production.


Assuntos
Fibromialgia , Humanos , Animais , Camundongos , Fibromialgia/diagnóstico , Dor , Autoanticorpos , Imunoglobulina G , Inquéritos e Questionários
4.
PLoS One ; 17(11): e0277427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36342939

RESUMO

Fibromyalgia (FM) patients have dysfunctional endogenous pain modulation, where opioid and serotonergic signaling is implicated. The aim of this study was to investigate whether genetic variants in the genes coding for major structures in the opioid and serotonergic systems can affect pain modulation in FM patients and healthy controls (HC). Conditioned pain modulation (CPM), evaluating the effects of ischemic pain on pressure pain sensitivity, was performed in 82 FM patients and 43 HC. All subjects were genotyped for relevant functional polymorphisms in the genes coding for the µ-opioid receptor (OPRM1, rs1799971), the serotonin transporter (5-HTT, 5-HTTLPR/rs25531) and the serotonin 1a receptor (5-HT1a, rs6295). Results showed the OPRM1 G-allele was associated with decreased CPM. A significant gene-to-gene interaction was found between the OPRM1 and the 5-HT1a gene. Reduced CPM scores were seen particularly in individuals with the OPRM1 G*/5-HT1a CC genotype, indicating that the 5-HT1a CC genotype seems to have an inhibiting effect on CPM if an individual has the OPRM1 G-genotype. Thus, regardless of pain phenotype, the OPRM1 G-allele independently as well as with an interaction with the 5-HT1a gene influenced pain modulation. FM patients had lower CPM than HC but no group differences were found regarding the genetic effects on CPM, indicating that the results reflect more general mechanisms influencing pain modulatory processes rather than underlying the dysfunction of CPM in FM. In conclusion, a genetic variant known to alter the expression of, and binding to, the my-opioid receptor reduced a subject's ability to activate descending pain inhibition. Also, the results suggest a genetically inferred gene-to-gene interaction between the main opioid receptor and a serotonergic structure essential for 5-HT transmission to modulate pain inhibition. The results in this study highlight the importance of studying joint synergistic and antagonistic effects of neurotransmittor systems in regard to pain modulation.


Assuntos
Fibromialgia , Humanos , Fibromialgia/genética , Analgésicos Opioides , Receptor 5-HT1A de Serotonina/genética , Limiar da Dor/fisiologia , Dor/genética , Receptores Opioides mu/genética , Genótipo , Polimorfismo de Nucleotídeo Único
5.
Pain ; 163(2): 274-286, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142769

RESUMO

ABSTRACT: A cerebral upregulation of the translocator protein (TSPO), a biomarker of glial activation, has been reported in fibromyalgia subjects (FMS). The TSPO binding affinity is genetically regulated by the Ala147Thr polymorphism in the TSPO gene (rs6971) and allows for a subject classification into high affinity binders (HABs) and mixed/low affinity binders (MLABs). The aim of the present multimodal neuroimaging study was to examine the associations of the TSPO polymorphism with: (1) conditioned pain modulation, (2) expectancy-modulated pain processing assessed during functional magnetic resonance imaging, and (3) the concentration and balance of glutamate and γ-aminobutyric acid in the rostral anterior cingulate cortex and thalamus using proton magnetic resonance spectroscopy in FMS (n = 83) and healthy controls (n = 43). The influence of TSPO on endogenous pain modulation presented in the form of TSPO HABs, as opposed to MLABs, displaying less efficient descending pain inhibition and expectancy-induced reduction of pain. Translocator protein HABs in both groups (FM and healthy controls) were found to have higher thalamic glutamate concentrations and exhibit a pattern of positive correlations between glutamate and γ-aminobutyric acid in the rostral anterior cingulate cortex, not seen in MLABs. Altogether, our findings point to TSPO-related mechanisms being HAB-dependent, brain region-specific, and non-FM-specific, although in FMS the disadvantage of an aberrant pain regulation combined with an HAB genetic set-up might hamper pain modulation more strongly. Our results provide evidence for an important role of TSPO in pain regulation and brain metabolism, thereby supporting the ongoing drug development targeting TSPO-associated mechanisms for pain relief.


Assuntos
Fibromialgia , Receptores de GABA , Encéfalo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Voluntários Saudáveis , Humanos , Neuroimagem , Dor/diagnóstico por imagem , Dor/genética , Dor/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/genética , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Eur J Pain ; 25(2): 398-414, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064887

RESUMO

BACKGROUND: Dysregulation of the µ-opioid receptor has been reported in fibromyalgia (FM) and was linked to pain severity. Here, we investigated the effect of the functional genetic polymorphism of the µ-opioid receptor gene (OPRM1) (rs1799971) on symptom severity, pain sensitivity and cerebral pain processing in FM subjects and healthy controls (HC). METHODS: Symptom severity and pressure pain sensitivity was assessed in FM subjects (n = 70) and HC (n = 35). Cerebral pain-related activation was assessed by functional magnetic resonance imaging during individually calibrated painful pressure stimuli. RESULTS: Fibromyalgia subjects were more pain sensitive but no significant differences in pain sensitivity or pain ratings were observed between OPRM1 genotypes. A significant difference was found in cerebral pain processing, with carriers of at least one G-allele showing increased activation in posterior cingulate cortex (PCC) extending to precentral gyrus, compared to AA homozygotes. This effect was significant in FM subjects but not in healthy participants, however, between-group comparisons did not yield significant results. Seed-based functional connectivity analysis was performed with the seed based on differences in PCC/precentral gyrus activation between OPRM1 genotypes during evoked pain across groups. G-allele carriers displayed decreased functional connectivity between PCC/precentral gyrus and prefrontal cortex. CONCLUSIONS: G-allele carriers showed increased activation in PCC/precentral gyrus but decreased functional connectivity with the frontal control network during pressure stimulation, suggesting different pain modulatory processes between OPRM1 genotypes involving altered fronto-parietal network involvement. Furthermore, our results suggest that the overall effects of the OPRM1 G-allele may be driven by FM subjects. SIGNIFICANCE: We show that the functional polymorphism of the µ-opioid receptor gene OPRM1 was associated with alterations in the fronto-parietal network as well as with increased activation of posterior cingulum during evoked pain in FM. Thus, the OPRM1 polymorphism affects cerebral processing in brain regions implicated in salience, attention, and the default mode network. This finding is discussed in the light of pain and the opioid system, providing further evidence for a functional role of OPRM1 in cerebral pain processing.


Assuntos
Fibromialgia , Fibromialgia/diagnóstico por imagem , Fibromialgia/genética , Humanos , Imageamento por Ressonância Magnética , Dor/diagnóstico por imagem , Dor/genética , Limiar da Dor , Polimorfismo Genético/genética , Receptores Opioides mu/genética
7.
Mol Brain ; 14(1): 81, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980291

RESUMO

The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5-HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5-HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5-HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5-HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5-HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.


Assuntos
Afeto/fisiologia , Epistasia Genética , Fibromialgia/genética , Dor/genética , Serotonina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Ansiedade/complicações , Ansiedade/genética , Ansiedade/fisiopatologia , Estudos de Casos e Controles , Fibromialgia/diagnóstico por imagem , Fibromialgia/fisiopatologia , Fibromialgia/psicologia , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Oxigênio/sangue , Dor/complicações , Dor/diagnóstico por imagem , Dor/fisiopatologia , Limiar da Dor , Tálamo/metabolismo
8.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196305

RESUMO

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.


Assuntos
Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibromialgia/etiologia , Gânglios Espinais/fisiopatologia , Humanos , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/imunologia , Nociceptores/fisiologia , Dor/fisiopatologia , Limiar da Dor/fisiologia
9.
Pain ; 161(9): 2079-2088, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379218

RESUMO

ABSTRACT: Behavioral studies have demonstrated aberrant safety processing in fibromyalgia subjects (FMSs) and suggested that patients accumulate new potential pain-related threats more effectively than extinguishing no longer relevant ones. The aim of the current study was to investigate the neural correlates of conditioned pain responses and their relationship with emotional distress in FMS (n = 67) and healthy controls (HCs, n = 34). Using functional magnetic resonance imaging, we traced conditioned pain responses to an identical moderately painful pressure (P30) depending on whether it was following a green (P30green) or a red (P30red) cue. The cues were previously associated with individually calibrated painful pressure stimuli of low and high intensity, corresponding to visual analogue scale 10 and 50 mm, respectively. Fibromyalgia subjects displayed increased P30green ratings over time, while P30red ratings remained elevated. Healthy controls adapted all pain ratings to resemble moderate pain. Fibromyalgia subjects exhibited increased activation for [P30green>P30red] in M1/anterior insula, whereas HC showed increased S2/mid-insula response to [P30red>P30green]. High pain catastrophizing scale (PCS) ratings in fibromyalgia (FM) covaried with heightened brain activation for [P30green] × PCS in left dorsolateral prefrontal cortex and medial prefrontal cortex/orbitofrontal cortex; and [P30green>P30red] × PCS in dorsal anterior cingulate cortex/mid-cingulate cortex; superior temporal pole, extending to anterior insula; bilateral thalamus; and posterior insula. Psychophysiological interaction analysis for FM [P30green>P30red] × PCS revealed a dissociation in functional connectivity between thalamus and bilateral inferior parietal lobe. In alignment with behavioral data, FMS displayed a cerebral response suggesting preferential formation of new pain-related associations while simultaneously maintaining no longer relevant ones. The opposite was observed in HC. Increased responses to pain-related threats in FM may contribute to dysfunctional pain-protective behaviors and disability.


Assuntos
Fibromialgia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Fibromialgia/complicações , Humanos , Imageamento por Ressonância Magnética , Dor/etiologia
10.
Pain ; 158(7): 1194-1203, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28282362

RESUMO

Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.


Assuntos
Fibromialgia/genética , Dor/genética , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina/genética , Receptores Opioides mu/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Alelos , Epistasia Genética , Terapia por Exercício , Feminino , Fibromialgia/terapia , Genótipo , Humanos , Pessoa de Meia-Idade , Manejo da Dor , Medição da Dor , Limiar da Dor/fisiologia , Pressão , Regiões Promotoras Genéticas , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA