Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 11(3): 037502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737491

RESUMO

Purpose: Immune checkpoint inhibitors (ICIs) are now one of the standards of care for patients with lung cancer and have greatly improved both progression-free and overall survival, although <20% of the patients respond to the treatment, and some face acute adverse events. Although a few predictive biomarkers have integrated the clinical workflow, they require additional modalities on top of whole-slide images and lack efficiency or robustness. In this work, we propose a biomarker of immunotherapy outcome derived solely from the analysis of histology slides. Approach: We develop a three-step framework, combining contrastive learning and nonparametric clustering to distinguish tissue patterns within the slides, before exploiting the adjacencies of previously defined regions to derive features and train a proportional hazards model for survival analysis. We test our approach on an in-house dataset of 193 patients from 5 medical centers and compare it with the gold standard tumor proportion score (TPS) biomarker. Results: On a fivefold cross-validation (CV) of the entire dataset, the whole-slide image-based survival analysis for patients treated with immunotherapy (WhARIO) features are able to separate a low- and a high-risk group of patients with a hazard ratio (HR) of 2.29 (CI95=1.48 to 3.56), whereas the TPS 1% reference threshold only reaches a HR of 1.81 (CI95=1.21 to 2.69). Combining the two yields a higher HR of 2.60 (CI95=1.72 to 3.94). Additional experiments on the same dataset, where one out of five centers is excluded from the CV and used as a test set, confirm these trends. Conclusions: Our uniquely designed WhARIO features are an efficient predictor of survival for lung cancer patients who received ICI treatment. We achieve similar performance to the current gold standard biomarker, without the need to access other imaging modalities, and show that both can be used together to reach even better results.

2.
Med Image Anal ; 85: 102763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764037

RESUMO

Given the size of digitized Whole Slide Images (WSIs), it is generally laborious and time-consuming for pathologists to exhaustively delineate objects within them, especially with datasets containing hundreds of slides to annotate. Most of the time, only slide-level labels are available, giving rise to the development of weakly-supervised models. However, it is often difficult to obtain from such models accurate object localization, e.g., patches with tumor cells in a tumor detection task, as they are mainly designed for slide-level classification. Using the attention-based deep Multiple Instance Learning (MIL) model as our base weakly-supervised model, we propose to use mixed supervision - i.e., the use of both slide-level and patch-level labels - to improve both the classification and the localization performances of the original model, using only a limited amount of patch-level labeled slides. In addition, we propose an attention loss term to regularize the attention between key instances, and a paired batch method to create balanced batches for the model. First, we show that the changes made to the model already improve its performance and interpretability in the weakly-supervised setting. Furthermore, when using only between 12 and 62% of the total available patch-level annotations, we can reach performance close to fully-supervised models on the tumor classification datasets DigestPath2019 and Camelyon16.


Assuntos
Bivalves , Neoplasias , Humanos , Animais , Compostos Radiofarmacêuticos
3.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406511

RESUMO

The histological distinction of lung neuroendocrine carcinoma, including small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC) and atypical carcinoid (AC), can be challenging in some cases, while bearing prognostic and therapeutic significance. To assist pathologists with the differentiation of histologic subtyping, we applied a deep learning classifier equipped with a convolutional neural network (CNN) to recognize lung neuroendocrine neoplasms. Slides of primary lung SCLC, LCNEC and AC were obtained from the Laboratory of Clinical and Experimental Pathology (University Hospital Nice, France). Three thoracic pathologists blindly established gold standard diagnoses. The HALO-AI module (Indica Labs, UK) trained with 18,752 image tiles extracted from 60 slides (SCLC = 20, LCNEC = 20, AC = 20 cases) was then tested on 90 slides (SCLC = 26, LCNEC = 22, AC = 13 and combined SCLC with LCNEC = 4 cases; NSCLC = 25 cases) by F1-score and accuracy. A HALO-AI correct area distribution (AD) cutoff of 50% or more was required to credit the CNN with the correct diagnosis. The tumor maps were false colored and displayed side by side to original hematoxylin and eosin slides with superimposed pathologist annotations. The trained HALO-AI yielded a mean F1-score of 0.99 (95% CI, 0.939-0.999) on the testing set. Our CNN model, providing further larger validation, has the potential to work side by side with the pathologist to accurately differentiate between the different lung neuroendocrine carcinoma in challenging cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA