Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(10): e111587, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37063065

RESUMO

Cancer cells display persistent underlying chromosomal instability, with individual tumour types intriguingly exhibiting characteristic subsets of whole, and subchromosomal aneuploidies. Few methods to induce specific aneuploidies will exist, hampering investigation of functional consequences of recurrent aneuploidies, as well as the acute consequences of specific chromosome mis-segregation. We therefore investigated the possibility of sabotaging the mitotic segregation of specific chromosomes using nuclease-dead CRISPR-Cas9 (dCas9) as a cargo carrier to specific genomic loci. We recruited the kinetochore-nucleating domain of centromere protein CENP-T to assemble ectopic kinetochores either near the centromere of chromosome 9, or the telomere of chromosome 1. Ectopic kinetochore assembly led to increased chromosome instability and partial aneuploidy of the target chromosomes, providing the potential to induce specific chromosome mis-segregation events in a range of cell types. We also provide an analysis of putative endogenous repeats that could support ectopic kinetochore formation. Overall, our findings provide new insights into ectopic kinetochore biology and represent an important step towards investigating the role of specific aneuploidy and chromosome mis-segregation events in diseases associated with aneuploidy.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mitose , Centrômero/genética , Centrômero/metabolismo , Aneuploidia , Segregação de Cromossomos
2.
EMBO Rep ; 21(5): e50322, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32346980

RESUMO

The natural progressive dysfunction of most living organisms-ageing-has captured the attention of several studies, with the intention to develop rejuvenation strategies. Evidence is emerging of a positive correlation between natural ageing and chromosomal instability (CIN). In this issue of EMBO Reports, Barroso-Vilares et al [1] now show a link between ageing and the erroneous assembly of the apparatus required for a proper cellular division. They compare this mechanism in young and naturally aged human cells and describe a strategy to delay age-related CIN.


Assuntos
Segregação de Cromossomos , Neoplasias , Envelhecimento/genética , Senescência Celular/genética , Instabilidade Cromossômica , Humanos
3.
Biomolecules ; 9(2)2019 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691136

RESUMO

It has recently emerged that human chromosomes vary between one another in terms of features that impact their behaviour during impaired chromosome segregation, leading to non-random aneuploidy in the daughter cell population. During the process of chromosome congression to the metaphase plate, chromosome movement is guided by kinesin-like proteins, among which centromere-associated protein E (CENP-E) is important to transport chromosomes along the microtubules of the mitotic spindle. It is known that the inhibition of CENP-E notably impairs alignment for a subset of chromosomes, particularly those positioned close to the centrosome at nuclear envelope breakdown ('polar chromosomes'); it is, however, not clear whether chromosome identity could influence this process. Since a popular strategy to model aneuploidy is to induce congression defects (for example combining CENP-E inhibitors with mitotic checkpoint abrogation), variance in congression efficiency between chromosomes might influence the landscape of aneuploidy and subsequent cell fates. By combining immunofluorescence, live cell imaging and fluorescence in situ hybridisation, we investigated the behaviour of polar chromosomes and their dependency upon CENP-E-mediated congression in human cells. We observed a bias in congression efficiency related to chromosome size, with larger chromosomes more sensitive to CENP-E inhibition. This bias is likely due to two contributing factors; an initial propensity of larger chromosomes to be peripheral and thus rely more upon CENP-E function to migrate to the metaphase plate, and additionally a bias between specific chromosomes' ability to congress from a polar state. These findings may help to explain the persistence of a subset of chromosomes at the centrosome following CENP-E disruption, and also have implications for the spectrum of aneuploidy generated following treatments to manipulate CENP-E function.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Aberrações Cromossômicas/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Humanos , Sarcosina/análogos & derivados , Sarcosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA