Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 16(4): e2004162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708962

RESUMO

The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células Neuroepiteliais/metabolismo , Neurogênese/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligases/genética , Animais , Animais Geneticamente Modificados , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Embrião de Galinha , Galinhas , Feminino , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Células Neuroepiteliais/citologia , Neurônios/citologia , Neurônios/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Transfecção , Ubiquitina-Proteína Ligases/metabolismo
2.
Genes Dev ; 24(11): 1186-200, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20516201

RESUMO

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.


Assuntos
Padronização Corporal/fisiologia , Proteínas Hedgehog/metabolismo , Tubo Neural/citologia , Tubo Neural/crescimento & desenvolvimento , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Regulação para Baixo , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Camundongos , Neurônios/citologia , Somitos/crescimento & desenvolvimento , Fatores de Tempo , Peixe-Zebra
3.
Development ; 140(7): 1467-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23462473

RESUMO

The conventional explanation for how a morphogen patterns a tissue holds that cells interpret different concentrations of an extrinsic ligand by producing corresponding levels of intracellular signalling activity, which in turn regulate differential gene expression. However, this view has been challenged, raising the possibility that distinct mechanisms are used to interpret different morphogens. Here, we investigate graded BMP signalling in the vertebrate neural tube. We show that defined exposure times to Bmp4 generate distinct levels of signalling and induce specific dorsal identities. Moreover, we provide evidence that a dynamic gradient of BMP activity confers progressively more dorsal neural identities in vivo. These results highlight a strategy for morphogen interpretation in which the tight temporal control of signalling is important for the spatial pattern of cellular differentiation.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Tubo Neural/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/fisiologia , Proteína Morfogenética Óssea 4/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Tubo Neural/citologia , Tubo Neural/efeitos dos fármacos , Tubo Neural/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/embriologia , Medula Espinal/metabolismo
4.
Development ; 139(2): 259-68, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22159578

RESUMO

BMP activity is essential for many steps of neural development, including the initial role in neural induction and the control of progenitor identities along the dorsal-ventral axis of the neural tube. Taking advantage of chick in ovo electroporation, we show a novel role for BMP7 at the time of neurogenesis initiation in the spinal cord. Using in vivo loss-of-function experiments, we show that BMP7 activity is required for the generation of three discrete subpopulations of dorsal interneurons: dI1-dI3-dI5. Analysis of the BMP7 mouse mutant shows the conservation of this activity in mammals. Furthermore, this BMP7 activity appears to be mediated by the canonical Smad pathway, as we demonstrate that Smad1 and Smad5 activities are similarly required for the generation of dI1-dI3-dI5. Moreover, we show that this role is independent of the patterned expression of progenitor proteins in the dorsal spinal cord, but depends on the BMP/Smad regulation of specific proneural proteins, thus narrowing this BMP7 activity to the time of neurogenesis. Together, these data establish a novel role for BMP7 in primary neurogenesis, the process by which a neural progenitor exits the cell cycle and enters the terminal differentiation pathway.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Interneurônios/fisiologia , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Proteínas Smad Reguladas por Receptor/metabolismo , Medula Espinal/embriologia , Análise de Variância , Animais , Embrião de Galinha , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/metabolismo , Luciferases , Camundongos , Mutação/genética , Neurogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Smad Reguladas por Receptor/genética
5.
Neuron ; 107(4): 617-630.e6, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32559415

RESUMO

Stable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids. In vitro, iOn permits rapid drug-free stable transgenesis of mouse and human pluripotent stem cells with multiple vectors. In vivo, we demonstrate faithful cell lineage tracing, assessment of regulatory elements, and mosaic analysis of gene function in somatic transgenesis experiments that reveal neural progenitor potentialities and interaction. These results establish iOn as a universally applicable strategy to accelerate and simplify genetic engineering in cultured systems and model organisms by conditioning transgene activation to genomic integration.


Assuntos
Expressão Gênica , Técnicas de Transferência de Genes , Células-Tronco Neurais , Transgenes , Animais , Linhagem da Célula , Vetores Genéticos , Humanos , Camundongos
6.
Light Sci Appl ; 7: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839589

RESUMO

Multiphoton microscopy combined with genetically encoded fluorescent indicators is a central tool in biology. Three-photon (3P) microscopy with excitation in the short-wavelength infrared (SWIR) water transparency bands at 1.3 and 1.7 µm opens up new opportunities for deep-tissue imaging. However, novel strategies are needed to enable in-depth multicolor fluorescence imaging and fully develop such an imaging approach. Here, we report on a novel multiband SWIR source that simultaneously emits ultrashort pulses at 1.3 and 1.7 µm that has characteristics optimized for 3P microscopy: sub-70 fs duration, 1.25 MHz repetition rate, and µJ-range pulse energy. In turn, we achieve simultaneous 3P excitation of green fluorescent protein (GFP) and red fluorescent proteins (mRFP, mCherry, tdTomato) along with third-harmonic generation. We demonstrate in-depth dual-color 3P imaging in a fixed mouse brain, chick embryo spinal cord, and live adult zebrafish brain, with an improved signal-to-background ratio compared to multicolor two-photon imaging. This development opens the way towards multiparametric imaging deep within scattering tissues.

7.
Neuron ; 93(3): 542-551.e4, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132826

RESUMO

Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mitosis, Mindbomb1 is associated with either one or both spindle poles. Asymmetric Mindbomb1 correlates with neurogenic divisions and Mindbomb1 is inherited by the prospective neuron. By contrast, in proliferative divisions, a supplementary pool of Mindbomb1 associated with the Golgi apparatus in interphase is released during mitosis and compensates for Mindbomb1 centrosomal asymmetry. Finally, we show that preventing Mindbomb1 centrosomal association induces reciprocal Notch activation between sister cells and promotes symmetric divisions. Thus, we uncover a link between differential centrosome maturation and Notch signaling and reveal an unexpected compensatory mechanism involving the Golgi apparatus in restoring symmetry in proliferative divisions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Mitose , Células-Tronco Neurais/metabolismo , Neurogênese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Divisão Celular , Centrossomo/metabolismo , Embrião de Galinha , Complexo de Golgi/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
8.
Dev Cell ; 18(4): 643-54, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20412778

RESUMO

Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Diferenciação Celular , Embrião de Galinha , Hibridização In Situ , Camundongos , Modelos Biológicos , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Tendões/patologia
9.
10.
Development ; 134(14): 2579-91, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17553906

RESUMO

Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.


Assuntos
Vasos Sanguíneos/embriologia , Padronização Corporal , Endotélio Vascular/embriologia , Extremidades/embriologia , Músculo Esquelético/embriologia , Proteínas Proto-Oncogênicas c-sis/fisiologia , Animais , Embrião de Galinha , Tecido Conjuntivo/embriologia , Células Endoteliais/fisiologia , Matriz Extracelular/fisiologia , Extremidades/irrigação sanguínea , Extremidades/fisiologia , Morfogênese , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Proteína MyoD/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Dev Dyn ; 235(1): 105-14, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16193509

RESUMO

We report here a method that allows fast, efficient, and low-cost screening for gene function in the vascular system of the vertebrate embryo. Through intracardiac delivery of nucleic acids optimally compacted by a specific cationic lipid, we are able to induce in vivo endothelial cell-specific gain-of-function during development of the vascular network in the chick embryo. When the nucleic acids are delivered during the period of intraembryonic hematopoiesis, aortic hemangioblasts, the forerunners of the hematopoietic stem cells known to derive from the aortic endothelium, are also labeled. Similarly, we show that siRNA could be used to induce loss-of-function in vascular endothelial cells. This gene transfer technique was also applied to the mouse embryo with a high efficiency. The present method allows large-scale analysis and may represent a new and versatile tool for functional genomics.


Assuntos
Embrião de Mamíferos/metabolismo , Endotélio Vascular/embriologia , Técnicas de Transferência de Genes , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Lipossomos , Neovascularização Fisiológica , Animais , Animais Geneticamente Modificados , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , RNA Interferente Pequeno , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
12.
Birth Defects Res C Embryo Today ; 75(3): 226-36, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16187327

RESUMO

Tendons and ligaments (T/L) are very similar fibrous tissues that respectively connect muscle to bone and bone to bone. They are comprised of fibroblasts that produce large amounts of extra-cellular matrix, resulting in a dense and hypocellular structure. The complex molecular organization of T/L, together with high water content, are responsible for their viscoelastic properties, hence insuring their mechanical function. We will first review recent work on tendon embryology and discuss ligament formation, which has been less documented. We will next summarize our current knowledge of T/L molecular architecture, alterations of which are a major cause for disease. We will finally focus on T/L repair after injury and on genetic diseases responsible for T/L defects.


Assuntos
Ligamentos/embriologia , Ligamentos/patologia , Traumatismos dos Tendões , Tendões/embriologia , Tendões/patologia , Fenômenos Biomecânicos , Tecido Conjuntivo , Técnicas de Cultura , Embrião de Mamíferos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Ligamentos/lesões , Ligamentos Articulares/patologia , Modelos Biológicos , Líquido Sinovial/metabolismo , Resistência à Tração , Fatores de Transcrição/metabolismo , Água/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA