Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(28): 9564-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606994

RESUMO

Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.


Assuntos
Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , RNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
RNA ; 10(2): 277-86, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730026

RESUMO

The 5'-region of the TIF4631 gene of Saccharomyces cerevisiae (encoding the translation initiation factor eIF4G1) was reported earlier to harbor a very active internal ribosome entry site (IRES) allowing for internal initiation of translation of TIF4631 mRNA. Here, we report the presence of a promoter in the region -112 to -36 relative to the translation initiation codon of the TIF4631 gene. This promoter stimulates transcription from a start site at position -36 and generates an mRNA that is actively translated in vitro and able to sustain growth of yeast cells in vivo as the only source of eIF4G. The data show that the IRES activity reported earlier is due to this promoter. On the contrary, the presumed IRES represents a strongly inhibitory element for translation in vitro.


Assuntos
Fatores de Iniciação de Peptídeos/genética , Regiões Promotoras Genéticas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Animais , Sítios de Ligação/genética , Fator de Iniciação 4F em Eucariotos , Fator de Iniciação Eucariótico 4G , Luciferases/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição
3.
EMBO J ; 22(5): 1199-209, 2003 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-12606584

RESUMO

The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N-terminal domain necessary and sufficient for prion propagation and a C-terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N-terminally truncated active form of the protein (amino acids 94-354) lacking the prion-forming domain. Expression of the truncated Ure2p form (94-354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full-length and truncated (94-354) Ure2p forms plays an important role in yeast cell physiology and differentiation.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Príons/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animais , Tamanho Celular , Códon de Iniciação , Genes Reporter , Glutationa Peroxidase , Fenótipo , Príons/química , Príons/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Regiões não Traduzidas
4.
RNA ; 9(7): 871-80, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810920

RESUMO

We identified and mapped RNA-binding sites of yeast Saccharomyces cerevisiae translation initiation factor eIF4G1 and examined their importance for eIF4G1 function in vitro and in vivo. Yeast eIF4G1 binds to single-stranded RNA with three different sites, the regions of amino acids 1-82 (N terminus), 492-539 (middle), and 883-952 (C terminus). The middle and C-terminal RNA-binding sites represent RS (arginine and serine)-rich domains; the N-terminal site is asparagine-, glutamine- and glycine-rich. The three RNA-binding sites have similar affinity for single-stranded RNA, whereas the affinity for single-stranded RNA full-length eIF4G1 is about 100-fold higher (approximate K(d) of 5 x 10(-8) M). Replacement of the arginine residues in the middle RS site by alanine residues abolishes its RNA-binding activity. Deletion of individual RNA-binding sites shows that eIF4G1 molecules lacking one binding site are still active in supporting growth of yeast cells and translation in vitro, whereas eIF4G1 molecules lacking two or all three RNA-binding sites are strongly impaired or inactive. These data suggest that RNA-binding activity is required for eIF4G1 function.


Assuntos
Fragmentos de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Poli U/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Sítios de Ligação , Cromatografia de Afinidade , Primers do DNA , Fator de Iniciação Eucariótico 4G , Cinética , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Fragmentos de Peptídeos/isolamento & purificação , Fatores de Iniciação de Peptídeos/isolamento & purificação , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biol Chem ; 279(35): 37087-94, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15215245

RESUMO

Ypr118w is a non-essential, low copy number gene product from Saccharomyces cerevisiae. It belongs to the PFAM family PF01008, which contains the alpha-, beta-, and delta-subunits of eukaryotic translation initiation factor eIF2B, as well as proteins of unknown function from all three kingdoms. Recently, one of those latter proteins from Bacillus subtilis has been characterized as a 5-methylthioribose-1-phosphate isomerase, an enzyme of the methionine salvage pathway. We report here the crystal structure of Ypr118w, which reveals a dimeric protein with two domains and a putative active site cleft. The C-terminal domain resembles ribose-5-phosphate isomerase from Escherichia coli with a similar location of the active site. In vivo, Ypr118w protein is required for yeast cells to grow on methylthioadenosine in the absence of methionine, showing that Ypr118w is involved in the methionine salvage pathway. The crystal structure of Ypr118w reveals for the first time the fold of a PF01008 member and allows a deeper discussion of an enzyme of the methionine salvage pathway, which has in the past attracted interest due to tumor suppression and as a target of aniprotozoal drugs.


Assuntos
Aldose-Cetose Isomerases/química , Fator de Iniciação 2B em Eucariotos/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Sítios de Ligação , Divisão Celular , Cristalografia por Raios X , Dimerização , Escherichia coli/metabolismo , Vetores Genéticos , Íons , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Ribulosefosfatos/química , Homologia de Sequência de Aminoácidos , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA