Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(4): 045701, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491279

RESUMO

We combined laser shock compression with in situ x-ray diffraction to probe the crystallographic state of gold (Au) on its principal shock Hugoniot. Au has long been recognized as an important calibration standard in diamond anvil cell experiments due to the stability of its face-centered cubic (fcc) structure to extremely high pressures (P >600 GPa at 300 K). This is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures. In this Letter, we probe high-pressure and high-temperature conditions on the shock Hugoniot and observe fcc Au at 169 GPa and the first evidence of body-centered cubic (bcc) Au at 223 GPa. Upon further compression, the bcc phase is observed in coexistence with liquid scattering as the Hugoniot crosses the Au melt curve before 322 GPa. The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near ∼220 GPa.

2.
Phys Rev Lett ; 117(7): 076402, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563978

RESUMO

Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M_{5}^{-} phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M_{5}^{-} phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

3.
Nat Commun ; 13(1): 2260, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477934

RESUMO

There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.

4.
Phys Rev Lett ; 107(19): 195504, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181626

RESUMO

Cubic scandium trifluoride (ScF3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO9 structure of ScF3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA