Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4001-4012, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291812

RESUMO

Recent computational studies have predicted many new ternary nitrides, revealing synthetic opportunities in this underexplored phase space. However, synthesizing new ternary nitrides is difficult, in part because intermediate and product phases often have high cohesive energies that inhibit diffusion. Here, we report the synthesis of two new phases, calcium zirconium nitride (CaZrN2) and calcium hafnium nitride (CaHfN2), by solid state metathesis reactions between Ca3N2 and MCl4 (M = Zr, Hf). Although the reaction nominally proceeds to the target phases in a 1:1 ratio of the precursors via Ca3N2 + MCl4 → CaMN2 + 2 CaCl2, reactions prepared this way result in Ca-poor materials (CaxM2-xN2, x < 1). A small excess of Ca3N2 (ca. 20 mol %) is needed to yield stoichiometric CaMN2, as confirmed by high-resolution synchrotron powder X-ray diffraction. In situ synchrotron X-ray diffraction studies reveal that nominally stoichiometric reactions produce Zr3+ intermediates early in the reaction pathway, and the excess Ca3N2 is needed to reoxidize Zr3+ intermediates back to the Zr4+ oxidation state of CaZrN2. Analysis of computationally derived chemical potential diagrams rationalizes this synthetic approach and its contrast from the synthesis of MgZrN2. These findings additionally highlight the utility of in situ diffraction studies and computational thermochemistry to provide mechanistic guidance for synthesis.

2.
Inorg Chem ; 63(7): 3250-3257, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150180

RESUMO

The synthesis of complex oxides at low temperatures brings forward aspects of chemistry not typically considered. This study focuses on perovskite LaMnO3, which is of interest for its correlated electronic behavior tied to the oxidation state and thus the spin configuration of manganese. Traditional equilibrium synthesis of these materials typically requires synthesis reaction temperatures in excess of 1000 °C, followed by subsequent annealing steps at lower temperatures and different p(O2) conditions to manipulate the oxygen content postsynthesis (e.g., LaMnO3+x). Double-ion exchange (metathesis) reactions have recently been shown to react at much lower temperatures (500-800 °C), highlighting a fundamental knowledge gap for how solids react at lower temperatures. Here, we revisit the metathesis reaction, LiMnO2 + LaOX, where X is a halide or mixture of halides, using in situ synchrotron X-ray diffraction. These experiments reveal low reaction onset temperatures (ca. 450-480 °C). The lowest reaction temperatures are achieved by a mixture of lanthanum oxyhalide precursors: 2 LiMnO2 + LaOCl + LaOBr. In all cases, the resulting products are the expected alkali halide salt and defective La1-ϵMn1-ϵO3, where ϵ = x/(3 + x). We observe a systematic variation in defect concentration, consistent with a rapid stoichiometric local equilibration of the precursors and the subsequent global thermodynamic equilibration with O2 (g), as revealed by computational thermodynamics. Together, these results reveal how the inclusion of additional elements (e.g., Li and a halide) leads to the local equilibrium, particularly at low reaction temperatures for solid-state chemistry.

3.
Inorg Chem ; 59(18): 13639-13650, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32866379

RESUMO

In the synthesis of complex oxides, solid-state metathesis provides low-temperature reactions where product selectivity can be achieved through simple changes in precursor composition. The influence of precursor structure, however, is less understood in solid-state synthesis. Here we present the ternary metathesis reaction (LiMnO2 + YOCl → YMnO3 + LiCl) to target two yttrium manganese oxide products, hexagonal and orthorhombic YMnO3, when starting from three different LiMnO2 precursors. Using temperature-dependent synchrotron X-ray and neutron diffraction, we identify the relevant intermediates and temperature regimes of reactions along the pathway to YMnO3. Manganese-containing intermediates undergo a charge disproportionation into a reduced Mn(II,III) tetragonal spinel and oxidized Mn(III,IV) cubic spinel, which lead to hexagonal and orthorhombic YMnO3, respectively. Density functional theory calculations confirm that the presence of Mn(IV) caused by a small concentration of cation vacancies (∼2.2%) in YMnO3 stabilizes the orthorhombic polymorph over the hexagonal. Reactions over the course of 2 weeks yield o-YMnO3 as the majority product at temperatures below 600 °C, which supports an equilibration of cation defects over time. Controlling the composition and structure of these defect-accommodating intermediates provides new strategies for selective synthesis of complex oxides at low temperatures.

4.
ACS Cent Sci ; 9(10): 1957-1975, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37901171

RESUMO

Synthesis is a major challenge in the discovery of new inorganic materials. Currently, there is limited theoretical guidance for identifying optimal solid-state synthesis procedures. We introduce two selectivity metrics, primary and secondary competition, to assess the favorability of target/impurity phase formation in solid-state reactions. We used these metrics to analyze 3520 solid-state reactions in the literature, ranking existing approaches to popular target materials. Additionally, we implemented these metrics in a data-driven synthesis planning workflow and demonstrated its application in the synthesis of barium titanate (BaTiO3). Using an 18-element chemical reaction network with first-principles thermodynamic data from the Materials Project, we identified 82985 possible BaTiO3 synthesis reactions and selected 9 for experimental testing. Characterization of reaction pathways via synchrotron powder X-ray diffraction reveals that our selectivity metrics correlate with observed target/impurity formation. We discovered two efficient reactions using unconventional precursors (BaS/BaCl2 and Na2TiO3) that produce BaTiO3 faster and with fewer impurities than conventional methods, highlighting the importance of considering complex chemistries with additional elements during precursor selection. Our framework provides a foundation for predictive inorganic synthesis, facilitating the optimization of existing recipes and the discovery of new materials, including those not easily attainable with conventional precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA