Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977221

RESUMO

Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.


Assuntos
Bactérias , Crustáceos , Exossomos , Ferroptose , Ferro , Sistema Enzimático do Citocromo P-450/metabolismo , Exossomos/metabolismo , Ferroptose/fisiologia , Ferro/metabolismo , Peroxidação de Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Oxirredutases/metabolismo , Proteínas de Membrana/metabolismo , Antígenos CD36/metabolismo , RNA-Seq , Compostos Ferrosos/metabolismo , Crustáceos/citologia , Crustáceos/genética , Crustáceos/metabolismo , Crustáceos/microbiologia , Ácidos Hidroxieicosatetraenoicos , Ácido Araquidônico/metabolismo , Ácidos Graxos/metabolismo , Bactérias/metabolismo
2.
Fish Shellfish Immunol ; 146: 109385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242262

RESUMO

The Toll pathway is crucial for innate immune responses in organisms (including Drosophila and mammals). The Spätzle protein outside of cells acts as a ligand for Toll receptors, enabling the transfer of signals from outside the cell to the inside. However, the function of Spätzle in the immune system of mud crab (Scylla paramamosain) remains unclear. This research discovered a novel Spätzle gene (Sp-Spz) in mud crab, which showed extensive expression in all the tissues that were examined. The RNA interference exhibited the correlation between Sp-Spz and the anti-lipopolysaccharide factors (ALFs). Knockdown of Sp-Spz decreased the expression of Sp-Toll2 but not Sp-Toll1. In Drosophila Schneider 2 cells, Sp-Spz was found interacted with Sp-Toll2. Moreover, the depletion of Sp-Spz caused the separation of hepatic lobules from the basement membrane, resulting in the disruption of the structural coherence of hepatopancreatic cells. Additionally, the knockdown of Sp-Spz resulted in changes to the composition of the hemolymph microbiota, specifically affecting the proportions of different phylum and family levels. The findings indicated that Sp-Spz may promote the synthesis of ALFs via Sp-Toll2, thereby influencing the homeostasis of microbiota in the hemolymph. In this study, novel insights into mud crab immunity are provided.


Assuntos
Braquiúros , Microbiota , Animais , Hemolinfa , Proteínas de Artrópodes , Homeostase , Drosophila/metabolismo , Imunidade Inata/genética , Mamíferos/metabolismo
3.
J Immunol ; 209(4): 710-722, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896338

RESUMO

Exosomes, secreted by most cells, are critical antimicrobial immune factors in animals. Recent studies of certain key regulators of vesicular transport, the Rab GTPases, have linked Rab dysfunction to regulation of innate immune signaling. However, the relationship between exosomes and Rab GTPases, resulting in antimicrobial activity in vertebrates and invertebrates during pathogenic infection, has not been addressed. In this study, SpRab11a was reported to have a protective effect on the survival rate of mud crabs Scylla paramamosain after Vibrio parahaemolyticus challenge through the stimulation of exosome secretion and modulation of anti-LPS factor (ALF) expression. Furthermore, Sp14-3-3 was confirmed to be densely packaged in exosomes after V. parahaemolyticus infection, which could recruit the MyD88 and TLR by binding the Toll/IL-1R domain to the plasma membrane, promoting the translocation of Dorsal from the cytoplasm into the nucleus, and thereby regulating ALFs expression in the hemocytes of mud crab in response to the bacterial infection. The findings therefore provide, to our knowledge, a novel mechanism that underlies the cross-talk between SpRab11a-regulated exosome formation and ALFs expression in innate immune response in invertebrates, with a crustacean species, mud crab S. paramamosain, as a model study.


Assuntos
Infecções Bacterianas , Braquiúros , Exossomos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/genética , Exossomos/metabolismo , Imunidade Inata , Filogenia , Proteínas rab de Ligação ao GTP/metabolismo
4.
Fish Shellfish Immunol ; 139: 108881, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279830

RESUMO

Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the innate immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were found to be regulated by WSSV infection. Knocking down of SpLITAF increased the WSSV copy number and expression of VP28 gene. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.


Assuntos
Braquiúros , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Imunidade Inata/genética , Apoptose , Peptídeos Antimicrobianos , Proteínas de Artrópodes , Filogenia , Perfilação da Expressão Gênica
5.
Fish Shellfish Immunol ; 140: 108984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549875

RESUMO

Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Fosfatidilinositol 3-Quinases , Crustáceos , Transdução de Sinais , Imunidade Inata
6.
Fish Shellfish Immunol ; 139: 108933, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37419435

RESUMO

The dietary supplementation of red seaweed-derived polysaccharides has been shown to be beneficial to fish and shellfish aquaculture. However, the function of red seaweed (Gracilaria lemaneiformis)-extracted polysaccharide (GLP) on the health status of rabbitfish (Siganus canaliculatus) is still unknown. This study explored the influences of GLP on growth performance, antioxidant activity, and immunity of rabbitfish. Herein, the fish were fed commercial pelleted feed incorporated with the diverse amount of GLP: 0 (control), 0.10 (GLP0.10), and 0.15 g kg-1 (GLP0.15) for 60 days. The results demonstrated that dietary GLP0.15 significantly elevated FBW and WG, while feed utilization efficiency improved (reduced feed conversion ratio and increased protein efficiency ratio) upon GLP0.10 treatment, regarding the control (P < 0.05). Also, dietary administration of GLP0.15 suggestively improved the serum acid phosphatase and lysozyme activity as well as hepatic total antioxidant capacity, catalase, and superoxide dismutase activity. In contrast, GLP0.15decreased the serum alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and malonaldehyde activity when compared to the control (P<0.05). Moreover, the lipase (36.08 and 16.46 U/mgprot in GLP0.10 and GLP0.15, respectively) and amylase (0.43 and 0.23 U/mgprot in GLP0.10 and GLP0.15, respectively) activity recorded the maximum values than the control (8.61 and 0.13 U/mgprot, respectively).Further, the intestinal morphometry was developed (such as increased villus length, width, and area) in the fish fed with a GLP-supplemented diet compared to the control. The KEGG pathway analysis unveiled that several differentially expressed genes (DEGs) in control vs. GLP0.10 and control vs. GLP0.15 were associated with metabolic or immune-associated pathways like antigen processing and presentation, phagosome, complement and coagulation cascades, and platelet activation. The DEGs, namely C3, f5, fgb, MHC1, and cfb, were evaluated in control vs. GLP0.10 and C3 and MHC1 in control vs. GLP0.15, suggesting their possible contributions to GLP-regulated immunity. Additionally, the cumulative mortality of rabbitfish after the Vibrio parahaemolyticus challenge was lower in both GLP0.10 (8.88%) and GLP0.15 (11.11%) than in control (33.33%) (P<0.05). Thus, these findings direct the potential use of GLP as an immunostimulant and growth promoter in rabbitfish aquaculture.


Assuntos
Gracilaria , Alga Marinha , Animais , Antioxidantes/metabolismo , Sulfatos/farmacologia , Imunidade Inata/genética , Suplementos Nutricionais/análise , Dieta/veterinária , Peixes/metabolismo , Polissacarídeos/farmacologia , Ração Animal/análise
7.
J Immunol ; 207(11): 2733-2743, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670821

RESUMO

Aquatic organisms have to produce proteins or factors that help maintain a stable relationship with microbiota and prevent colonization by pathogenic microorganisms. In crustaceans and other aquatic invertebrates, relatively few of these host factors have been characterized. In this study, we show that the respiratory glycoprotein hemocyanin is a crucial host factor that modulates microbial composition and diversity in the hepatopancreas of penaeid shrimp. Diseased penaeid shrimp (Penaeus vannamei), had an empty gastrointestinal tract with atrophied hepatopancreas, expressed low hemocyanin, and high total bacterial abundance, with Vibrio as the dominant bacteria. Similarly, shrimp depleted of hemocyanin had mitochondrial depolarization, increased reactive oxygen species (ROS) levels, and dysregulation of several energy metabolism-related genes. Hemocyanin silencing together with ROS scavenger (N-acetylcysteine) treatment improved microbial diversity and decreased Vibrio dominance in the hepatopancreas. However, fecal microbiota transplantation after hemocyanin knockdown could not restore the microbial composition in the hepatopancreas. Collectively, our data provide, to our knowledge, new insight into the pivotal role of hemocyanin in modulating microbial composition in penaeid shrimp hepatopancreas via its effect on mitochondrial integrity, energy metabolism, and ROS production.


Assuntos
Hemocianinas/metabolismo , Hepatopâncreas/metabolismo , Penaeidae/microbiologia , Animais , Metabolismo Energético , Hemocianinas/imunologia , Hepatopâncreas/imunologia , Penaeidae/imunologia , Penaeidae/metabolismo
8.
Fish Shellfish Immunol ; 104: 252-261, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32497727

RESUMO

Activating transcription factors 2 (ATF2) is a transcription factor of the members of ATF/CREB family that is phosphorylated and activated by the mitogen-activated protein kinase (MAPK) in responding to the stimulation of stimuli. In present study, SpATF2 from mud crab (Scylla paramamosain) was identified and studied. The open reading frame of SpATF2 with 2136 bp in length encodes a protein with 711 amino acids. The SpATF2 protein includes the putative zinc finger domain in the N-terminus and bZIP type DNA-binding domain in the C-terminal. Tissue distribution of SpATF2 transcripts showed that SpATF2 was ubiquitously expressed in all examined tissues of the untreated mud crabs, with the highest expression levels in muscle and hepatopancreas. The transcriptional level of SpATF2 was up-regulated in the hemocytes after Vibrio parahemolyticus or WSSV infection. Reporter gene assays indicated that SpATF2 could activate the expression of dual oxidase (SpDuox1) in S. paramamosain. The RNA interference (RNAi) of SpATF2 significantly decreased the expression of SpDuox1, and consequently reduced reactive oxygen species production thereby significantly increased the bacterial load in the hemolymph of mud crabs. Similarly, significant reduction in bacterial clearance of hemolymph was observed after the V. parahemolyticus infection in SpATF2 knockdown mud crabs. This study showed that SpATF2 played a vital role in maintaining homeostasis of the hemolymph microbiota through regulating the expression of dual oxidase of mud crab.


Assuntos
Fator 2 Ativador da Transcrição/imunologia , Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Braquiúros/microbiologia , Hemolinfa/microbiologia , Microbiota , Fator 2 Ativador da Transcrição/genética , Animais , Proteínas de Artrópodes/genética , Hemócitos/metabolismo , Hemolinfa/imunologia , Homeostase , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
9.
Fish Shellfish Immunol ; 89: 564-573, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30991148

RESUMO

Prebiotics has been known to be growth promoter and immunostimulant in aquatic animals. In this study, we investigated the effects of prebiotics on growth performance, intestinal microbiota, short-chain fatty acids (SCFAs) production and immune response of the marine fish, juvenile chu's croaker (Nibea coibor). The fish were fed IG (including 0.5% inulin and 0.5% GOS), GS (0.5% GOS and 0.5% D-sorbitol), IGS (0.33% inulin, 0.33% GOS and 0.33% D-sorbitol) or control diets for 8 weeks. The results showed that the growth performance of the fish was promoted by IG and GS, but not by IGS. The intestinal microbiota in NDC (non-digestible carbohydrates, NDC)-supplemented groups was clearly separated from that of the control, and the highest Shannon and Simpson diversity indices were observed in the IGS group. In the intestine of the croaker, Proteobacteria, Firmicutes, and Bacteroidetes were dominant; among them, 24 taxa revealed a significant difference among groups. Most of these bacteria are able to produce SCFAs, which were significantly increased in all NDC-supplemented groups. Moreover, NDCs were found to activate the immune system of the fish by modulating the serum complements, cytokine levels, lysozyme activities and antioxidant capacity. Furthermore, the results of this study revealed correlations among intestinal microbiota, SCFAs production, innate immunity, antioxidant capacity and digestive enzymes in the croaker fed NDCs. Taken together, our results demonstrated that NDC mixtures might promote growth performance, antioxidant capacity and immune responses of the croaker through modulating the composition of intestinal microbiota and the subsequent SCFAs production, which suggest that NDCs were efficient feed additives for marine fish.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Prebióticos/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos Voláteis/metabolismo , Inulina/administração & dosagem , Inulina/farmacologia , Oligossacarídeos/administração & dosagem , Oligossacarídeos/farmacologia , Perciformes/microbiologia , Distribuição Aleatória , Sorbitol/administração & dosagem , Sorbitol/farmacologia
10.
Fish Shellfish Immunol ; 84: 322-332, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300737

RESUMO

Serine proteases (SPs) are important in various immune responses, including prophenoloxidase (proPO) activation, antimicrobial peptides (AMPs) synthesis, and hemolymph coagulation in invertebrates. In this study, SP3 and SP5 of mud crab (Scylla paramamosain) were studied. SP3 and SP5 were expressed in all examined tissues (mainly in hemocytes), and are associated with the immune responses of mud crab to Vibrio parahemolyticus and Staphylococcus aureus, as well as interacted with TRAF6, and are involved in the activation of anti-lipopolysaccharide factors (ALFs) probably through the TLR/NF-κB pathway. Depletion of SP3 inhibited the expression of ALF1, ALF2, ALF3, and ALF6, while knockdown of SP5 significantly decreased ALF5, and ALF6. Furthermore, both SP5 and TRAF6 regulated the PO activity in the hemolymph of mud crab. Overexpression assay showed that both SP3 and SP5 could enhance the promoter activities of ALFs in mud crab. Taken together, the results of this study indicate that SP3 and SP5 might play important roles in the immune system of mud crab against pathogen invasion.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Serina Proteases/genética , Serina Proteases/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Serina Proteases/química , Staphylococcus aureus/fisiologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Vibrio parahaemolyticus/fisiologia
11.
Fish Shellfish Immunol ; 87: 166-177, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639477

RESUMO

Vibrio parahaemolyticus is one of the major pathogens caused diseases in cultured mud crab (Scylla paramamosain). Mud crabs lack an adaptive immune system, their defenses depend almost on innate immunity. Evaluation of the molecular responses of mud crabs to pathogens is essential for control of disease occurrence in farmed animals. In this study, the impacts of V. parahaemolyticus on immunity-related genes and metabolites in mud crabs of different groups (PG, SG and MG refer to controlled, survival and moribund groups, respectively) were investigated. Our results revealed that V. parahaemolyticus infection stimulated significant expressions of immune-related genes (prophenoloxidase, alpha 2-macroglobulin, lysosomal-associated membrane protein, Rab5, C-type lectin B and anti-lipopolysaccharide factor 5) in the MG within 72 h post-infection. The ATP content was significantly reduced in all tissues except muscle of moribund mud crabs. A total of 668 metabolites (including 190 down-regulated and 145 up-regulated) were identified and assigned to 77 pathways in both SG and MG. Metabolites involved in the saturated fatty acid are up-regulated, whereas unsaturated fatty acid and amino acid metabolisms are down-regulated in the immune system of mud crabs during the bacterial infection in MG. Furthermore, a reduction of hemocyte number and an increase of microbial abundance was found in MG. Our results demonstrated that V. parahaemolyticus induced death of mud crabs through reducing the metabolites associate with energy biosynthesis and innate immune system (i.e. proliferation of hemocyte and melanization), resulting in decrease of ATP in different tissues and failed to clearance of pathogens, respectively. The findings of this study provide a basic information of the responses of mud crab on bacterial infection, which is essential for prevention and control of diseases in mud crab aquaculture.


Assuntos
Braquiúros/imunologia , Braquiúros/microbiologia , Vibrio parahaemolyticus/imunologia , Animais , Aquicultura , Braquiúros/genética , Braquiúros/metabolismo , Regulação da Expressão Gênica , Hemócitos/imunologia , Imunidade Inata
12.
Fish Shellfish Immunol ; 89: 326-336, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30974215

RESUMO

Transglutaminase (TGase) is important in blood coagulation, a conserved immunological defense mechanism among invertebrates. This study is the first report of the TGase in mud crab (Scylla paramamosain) (SpTGase) with a 2304 bp ORF encoding 767 amino acids (molecular weight 85.88 kDa). SpTGase is acidic, hydrophilic, stable and thermostable, containing three transglutaminase domains, one TGase/protease-like homolog domain (TGc), one integrin-binding motif (Arg270, Gly271, Asp272) and three catalytic sites (Cys333, His401, Asp424) within the TGc. Neither a signal peptide nor a transmembrane domain was found, and the random coil is dominant in the secondary structure of SpTGase. Phylogenetic analysis revealed a close relation between SpTGase to its homolog EsTGase 1 from Chinese mitten crab (Eriocheir sinensis). Expression of SpTGase was investigated using qRT-PCR (1) in eight tissues from healthy mud crabs, with the highest expression in hemocytes, and (2) in response to various immune challenges (Vibrio parahaemolyticus, lipopolysaccharide (LPS) or Poly I:C infection), revealing a major up-regulation in hemocytes, skin, and hepatopancreas during the 96-h post injection. The recombinant SpTGase showed a capacity of agglutination activities on both Gram-negative bacteria and yeast. SpTGase was found to directly interact with another important blood coagulation component clip domain serine protease (SpcSP). Moreover, knockdown of SpTGase resulted in a decreased expression of both clotting protein precursor (SppreCP) and SpcSP and an increase of duration time in the blood coagulation. Taken together, the findings of this study suggest SpTGase play an important role in the hemolymph clotting in mud crab S. paramamosain.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Transglutaminases/genética , Transglutaminases/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Braquiúros , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência , Transglutaminases/química , Vibrio parahaemolyticus/fisiologia
13.
Fish Shellfish Immunol ; 93: 135-143, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326583

RESUMO

Mud crabs (Scylla paramamosain), a commercially important cultured species in the southeastern region of China, is usually infected by Vibriosis or parasites, causing great economic losses in cultured farms. Previous studies have demonstrated that probiotics benefited in enhancing the immune response against invading pathogens in aquatic animals. In this study, the effects of dietary administration of lactic acid bacteria (LAB) (Enterococcus faecalis Y17 and Pediococcus pentosaceus G11) on growth performance and immune responses of mud crab were assessed. Both strains (Y17 and G11) showed an inhibitory activity against bacterial pathogens (Aeromonas hydrophila, Vibrio parahaemolyticus, Vibrio alginolyticus, Staphylococcus aureus, and ß Streptococcus), and a wide pH tolerance range of 2-10. In vivo, mud crabs were fed a control diet and experimental diets supplemented with 109 cfu g-1 diet either Y17 or G11 for 6 weeks before subjecting to a challenge test with V. parahaemolyticus for 12 h. The probiotic-supplemented diets had significant effects on weight gain and specific growth rate during the feeding trial. Increased serum enzyme activities of phenoloxidase, lysozyme, and SOD were observed in the hemolymph of mud crab in Y17 and G11-supplemented groups compared to that in the controls (P < 0.01). The significantly up-regulated expression of gene CAT, LYS, proPO, and SOD could be seen in hepatopancreas in G11-supplemented groups. After the pathogenicity test, the survival rate of Y17 + and G11 + V. parahaemolyticus groups was 66.67% and 80.00%, respectively, compared with 53.33% for the control groups. Taken together, dietary supplementation of Y17 and G11 strains were beneficial in mud crab, which could increase growth performance, modulate immune system and protect the host against V. parahaemolyticus infection.


Assuntos
Braquiúros/imunologia , Enterococcus faecalis/química , Pediococcus pentosaceus/química , Probióticos/farmacologia , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Braquiúros/microbiologia , Dieta/veterinária , Distribuição Aleatória , Staphylococcus aureus/fisiologia , Streptococcus/fisiologia , Vibrio/fisiologia
14.
Fish Shellfish Immunol ; 94: 852-860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31600594

RESUMO

Bcl-2 associated athanogene-1 (BAG1) is involved in various signalling pathways including apoptosis, cell proliferation, gene transcriptional regulation and signal transduction in animals. However the functions of BAG1 during the antiviral response of mud crab Scylla paramamosain is still unclear. In this study, the mud crab BAG1 (SpBAG1) was characterized to consist of 1761 nucleotides, containing an opening frame of 630bp encoding 209 amino acids with an ubiquitin domain and a BAG1 domain. SpBAG1 was found to be significantly up-regulated at 6 h-24 h, but down-regulated from 48 h-72 h in the hemocytes of mud crab after challenge with white spot syndrome virus (WSSV). RNAi knock-down of SpBAG1 significantly reduced the copies of WSSV and increased the apoptotic rate in mud crabs. The finding from this study suggested that SpBAG1 could promote the WSSV infection by inhibiting apoptosis in mud crab. Therefore, to the best of our knowledge, this is the first study demonstrating the role of SpBAG1 as a novel apoptosis inhibitor to promote virus infection in mud crab.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/imunologia , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteína de Morte Celular Associada a bcl/química
15.
Fish Shellfish Immunol ; 78: 79-90, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29679762

RESUMO

Phagocytosis and apoptosis are key cellular innate immune responses against bacteria and virus in invertebrates. Class B scavenger receptors (SRBs), which contain a CD36 domain, are critical pattern recognition receptors (PRRs) of phagocytosis for bacteria and apoptotic cells. In the present study, we identified a member of SRB subfamily in mud crab Scylla paramamosain, named Sp-SRB. The full-length cDNA of Sp-SRB is 2593 bp with a 1629 bp open reading frame (ORF) encoding a putative protein of 542 amino acids, and predicted to contain a CD36 domain with two transmembrane regions at the C- and N-terminals. Real-time qPCR analysis revealed that Sp-SRB was widely expressed in all tissues tested, and the expression of Sp-SRB was up-regulated upon challenge with Vibrio parahaemolyticus, white spot syndrome virus (WSSV), lipopolysaccharides (LPS) and polyinosinic polycytidylic acid (PolyI:C). Moreover, in vitro experiments indicated that recombinant Sp-SRB protein (rSp-SRB) could bind to fungi, Gram-positive and Gram-negative bacteria. RNA interference of Sp-SRB resulted in significant reduction in the expression level of phagocytosis related genes, antimicrobial peptides (AMPs) and Toll-like receptors (TLRs), which consequently led to impairment in both bacterial clearance and the phagocytotic activity of hemocytes. In addition, we found that Sp-SRB had the ability to attenuate the replication of WSSV proliferation in mud crab S. paramamosain. Collectively, this study has shown that Sp-SRB contributed to bacteria clearance by enhancing phagocytosis and up-regulating the expression of AMPs possibly in a TRLs (SpToll 1 and SpToll 2)-dependent manner. Besides, Sp-SRB inhibited the replication of WSSV in S. paramamosian probably through enhancement of hemocytes phagocytosis of apoptotic cells.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Fagocitose/imunologia , Filogenia , Poli I-C/farmacologia , Receptores Depuradores Classe B/química , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
16.
World J Microbiol Biotechnol ; 34(6): 71, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777414

RESUMO

Gut microbiota plays a crucial importance in their host. Disturbance of the microbial structure and function is known to be associated with inflammatory intestinal disorders. Enteritis is a significant cause of high mortality in fish species, including grass carp (Ctenopharyngodon idellus). Study regarding the association between microbial alternations and enteritis in grass carp is still absent. In this study, changes in the gut microbiota of grass carp suffering from enteritis were investigated using NGS-based 16S rRNA sequencing. Six healthy and ten abnormal fish (showing reddening anus, red odiferous fluid accumulating in the abdominal capacity, and flatulence and haemorrhage in the intestine) were collected from a fish farm in Huanggang Fisheries Institute (Hubei, China). Our results revealed that the diversity, structure, and function of gut microbiota were significantly different between diseased and healthy fish (P < 0.05). Particularly, members of the genera Dechloromonas, Methylocaldum, Planctomyces, Rhodobacter, Caulobacter, Flavobacterium, and Pseudomonas were significantly increased in diseased fish compared with that in healthy fish (P < 0.05). Predicted function indicated that microbiota significantly changed the specific metabolic pathways (related to amino acid metabolism, xenobiotics biodegradation and metabolism, and carbohydrate metabolism) in diseased fish (P < 0.05). Taken together, our findings point out the association between changes of the gut microbiota and enteritis in grass carp, which provide basic information useful for diagnoses, prevention, and treatment of intestinal diseases occurring in cultured fish.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Carpas/microbiologia , Doenças dos Peixes/microbiologia , Microbioma Gastrointestinal , Enteropatias/microbiologia , Enteropatias/veterinária , Animais , Bactérias/genética , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Biodiversidade , China , DNA Bacteriano/genética , Pesqueiros , Intestinos/microbiologia , Redes e Vias Metabólicas , Filogenia , RNA Ribossômico 16S/genética
17.
Fish Shellfish Immunol ; 45(1): 72-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25681750

RESUMO

The blunt snout bream, Megalobrama amblycephala, is a herbivorous freshwater fish species native to China and a major aquaculture species in Chinese freshwater polyculture systems. In recent years, the bacterium Aeromonas hydrophila has been reported to be its pathogen causing great losses of farmed fish. To understand the immune response of the blunt snout bream to A. hydrophila infection, we used the Solexa/Illumina technology to analyze the transcriptomic profile after artificial bacterial infection. Two nonnormalized cDNA libraries were synthesized from tissues collected from control blunt snout bream or those injected with A. hydrophila. After assembly, 155,052 unigenes (average length 692.8 bp) were isolated. All unigenes were annotated using BLASTX relative to several public databases: the National Center for Biotechnology Information nonreduntant (Nr) database, SwissProt, Eukaryotic Orthologous Groups of proteins (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). The sequence similarity (86%) of the assembled unigenes was to zebrafish based on the Nr database. A number of unigenes (n = 30,482) were assigned to three GO categories: biological processes (25,242 unigenes), molecular functions (26,096 unigenes), and cellular components (22,778 unigenes). 20,909 unigenes were classified into 25 KOG categories and 28,744 unigenes were assigned into 315 specific signaling pathways. In total, 238 significantly differentially expressed unigenes (mapped to 125 genes) were identified: 101 upregulated genes and 24 downregulated genes. Another 303 unigenes were mapped to unknown or novel genes. Among the known expressed genes identified, 53 were immune-related genes and were distributed in 71 signaling pathways. The expression patterns of selected up- and downregulated genes from the control and injected groups were determined with reverse transcription-quantitative PCR (RT-qPCR). Microsatellites (n = 10,877), including di-to pentanucleotide repeat motifs, were also identified in the blunt snout bream transcriptome profiles. This study extends our understanding of the immune defense mechanisms of the blunt snout bream against A. hydrophila and provides useful data for further studies of the immunogenetics of this species.


Assuntos
Aeromonas hydrophila/fisiologia , Cyprinidae , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Transcriptoma , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Biblioteca Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Repetições de Microssatélites , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária
18.
Int J Mol Sci ; 16(4): 7077-97, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25830478

RESUMO

MyD88 and TRAF6 play an essential role in the innate immune response in most animals. This study reports the full-length MaMyD88 and MaTRAF6 genes identified from the blunt snout bream (Megalobrama amblycephala) transcriptome profile. MaMyD88 is 2501 base pairs (bp) long, encoding a putative protein of 284 amino acids (aa), including the N-terminal DEATH domain of 78 aa and the C-terminal TIR domain of 138 aa. MaTRAF6 is 5474 bp long, encoding a putative protein of 542 aa, including the N-terminal low-complexity region, RING domain (40 aa), a coiled-coil region (64 aa) and C-terminal MATH domain (147 aa). Coding regions of MaMyD88 and MaTRAF6 genomic sequences consisted of five and six exons, respectively. Physicochemical and functional characteristics of the proteins were analysed. Alpha helices were dominant in the secondary structure of the proteins. Homology models of the MaMyD88 and MaTRAF6 domains were constructed applying the comparative modelling method. RT-qPCR was used to analyse the expression of MaMyD88 and MaTRAF6 mRNA transcripts in response to Aeromonas hydrophila challenge. Both genes were highly upregulated in the liver, spleen and kidney during the first 24 h after the challenge. While MyD88 and TRAF6 have been reported in various aquatic species, this is the first report and characterisation of these genes in blunt snout bream. This research also provides evidence of the important roles of these two genes in the blunt snout bream innate immune system.


Assuntos
Cyprinidae/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Clonagem Molecular , Cyprinidae/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Rim/metabolismo , Fígado/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Baço/metabolismo , Fator 6 Associado a Receptor de TNF/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-39002082

RESUMO

Dioxins are endocrine disruptors that may disturb male sexual and reproductive function. Studies on human populations are limited, and their results are controversial. This study evaluated the impact of dioxin exposure on reproductive and thyroid hormone levels and sexual function in men. A total of 140 men working in four military airbases (three bases were formerly contaminated with dioxin by the herbicide spraying campaign in the Vietnam War) were recruited to measure the serum dioxin levels. Four reproductive hormones (testosterone, follicle-stimulating hormone, luteinizing hormone (LH), and prolactin) and three thyroid hormones (free triiodothyronine (FT3), free thyroxin (FT4), and thyroid stimulating hormone) were measured. Male sexual function endpoints including sexual drive, erection, ejaculation, problems, and overall satisfaction were assessed by the Brief Male Sexual Function Inventory. The percentage of subjects with low testosterone and LH levels was 19.6% and 16.7%, respectively. Dioxins, especially 2,3,7,8-tetrachlorodibenzo-P-dioxin and toxic equivalent concentrations of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, were inversely associated with testosterone and prolactin levels, but positively associated with FT3 and FT4, and showed adverse relationships with sexual function, such as sexual drive, problems, and overall satisfaction. Our results suggested that exposure to dioxin disrupts the homeostasis of reproductive and thyroid hormones leading to adverse effects on male sexual function.

20.
Animals (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835665

RESUMO

The Chinese mitten crab (Eriocheir sinensis) has significant economic potential in both the Chinese domestic and global markets. The hemolymph microbiota is known to play a critical role in regulating physiological and biochemical functions in crustaceans. However, the study of the hemolymph microbiota of E. sinensis in response to infections has not been undertaken. In this study, changes in the composition and function of the hemolymph microbiota in E. sinensis infected with either Staphylococcus aureus (Sa) or Aeromonas hydrophila (Ah) were investigated using 16S rRNA sequencing, with a phosphate buffer saline (PBS) injection serving as the control. Results showed that the dominant hemolymph microbiota of E. sinensis were Proteobacteria, Bacteroidota, and Firmicutes. The relative abundance of the phyla Firmicutes, Bdellovibrionota, and Myxococcota was significantly reduced in both Sa and Ah groups compared to the PBS group. At the genus level, compared to the PBS group, a significant increase in the abundance of Flavobacterium and Aeromonas was found in both Ah and Sa groups. The analysis of the functional profile showed that pathways related to 'cell growth and death', 'metabolism of terpenoids and polyketides', 'cancers', 'lipid metabolism', 'neurodegenerative diseases', 'metabolism of other amino acids', 'xenobiotics biodegradation and metabolism', and 'circulatory system and endocrine system' were predominant in the Ah group. Meanwhile, pathways related to 'metabolism or genetic information progressing', such as 'translation', 'metabolic diseases', and 'cellular processes and signaling', were enriched in the Sa group. This study revealed the effects of pathogens (S. aureus or A. hydrophila) on the maintenance of the hemolymph microbiota in E. sinensis. It shed light on the mechanisms employed by the hemolymph microbiota of E. sinensis under pathogen stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA