Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(3): 1285-1295, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28013546

RESUMO

Noncentrosymmetric mixed-metal carbonate fluorides are promising materials for deep-ultraviolet (DUV) nonlinear optical (NLO) applications. We report on the synthesis, characterization, structure-property relationships, and electronic structure calculations on two new DUV NLO materials: KMgCO3F and Cs9Mg6(CO3)8F5. Both materials are noncentrosymmetric (NCS). KMgCO3F crystallizes in the achiral and nonpolar NCS space group P6̅2m, whereas Cs9Mg6(CO3)8F5 is found in the polar space group Pmn21. The compounds have three-dimensional structures built up from corner-shared magnesium oxyfluoride and magnesium oxide octahedra. KMgCO3F (Cs9Mg6(CO3)8F5) exhibits second-order harmonic generation (SHG) at both 1064 and 532 nm incident radiation with efficiencies of 120 (20) × α-SiO2 and 0.33 (0.10) × ß-BaB2O4, respectively. In addition, short absorption edges of <200 and 208 nm for KMgCO3F and Cs9Mg6(CO3)8F5, respectively, are observed. We compute the electron localization function and density of states of these two compounds using first-principles density functional theory, and show that the different NLO responses arise from differences in the denticity and alignment of the anionic carbonate units. Finally, an examination of the known SHG active AMCO3F (A = alkali metal, M = alkaline earth metal, Zn, Cd, or Pb) materials indicates that, on average, smaller A cations and larger M cations result in increased SHG efficiencies.

2.
Inorg Chem ; 56(5): 2566-2575, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199086

RESUMO

The noncentrosymmetric tungstate oxide, Ce18W10O57, was synthesized for the first time as high-quality single crystals via the molten chloride flux method and structurally characterized by single-crystal X-ray diffraction. The compound is a structural analogue to the previously reported La18W10O57, which crystallizes in the hexagonal space group P6̅2c. The +3 oxidation state of cerium in Ce18W10O57 was achieved via the in situ reduction of Ce(IV) to Ce(III) using Zn metal. The structure consists of both isolated and face-shared WO6 octahedra and, surprisingly, isolated WO6 trigonal prisms. A careful analysis of the packing arrangement in the structure makes it possible to explain the unusual structural architecture of Ce18W10O57, which is described in detail. The temperature-dependent magnetic susceptibility of Ce18W10O57 indicates that the cerium(III) f1 cations do not order magnetically and exhibit simple paramagnetic behavior. The SHG efficiency of Ln18W10O57 (Ln = La, Ce) was measured as a function of particle size, and both compounds were found to be SHG active with efficiency approximately equal to that of α-SiO2.

3.
Angew Chem Int Ed Engl ; 56(11): 2969-2973, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140509

RESUMO

A new beryllium-free deep-ultraviolet (DUV) nonlinear optical (NLO) material, ß-Rb2 Al2 B2 O7 (ß-RABO), has been synthesized and characterized. The chiral nonpolar acentric material shows second-harmonic generation (SHG) activity at both 1064 and 532 nm with efficiencies of 2×KH2 PO4 and 0.4×ß-BaB2 O4 , respectively, and exhibits a short absorption edge below 200 nm. ß-Rb2 Al2 B2 O7 has a three-dimensional structure of corner-shared Al(BO3 )3 O polyhedra. The discovery of ß-RABO shows that through careful synthesis and characterization, replacement of KBe2 BO3 F2 (KBBF) by a Be-free DUV NLO material is possible.

4.
Inorg Chem ; 55(7): 3215-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26974872

RESUMO

Single crystals of K8(K5F)U6Si8O40 were grown from a mixed alkali halide flux. K8(K5F)U6Si8O40 is the first intergrowth uranyl silicate, being composed of alternating slabs related to two previously reported uranyl silicates: Cs2USiO6 and [Na9F2][(UO2)(UO2)2(Si2O7)2]. It exhibits intense luminescence, which is influenced by the [(UO2)2O] dimers present in the structure.

5.
Inorg Chem ; 55(17): 8951-60, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27505146

RESUMO

Structural characterization by neutron diffraction, supported by magnetic, SHG, and µ(+)SR data, reveals that the n = 2 Ruddlesden-Popper phase La2SrCr2O7 adopts a highly unusual structural configuration in which the cooperative rotations of the CrO6 octahedra are out of phase in all three Cartesian directions (ΦΦΦz/ΦΦΦz; a(-)a(-)c(-)/a(-)a(-)c(-)) as described in space group A2/a. First-principles DFT calculations indicate that this unusual structural arrangement can be attributed to coupling between the La/Sr A-site distribution and the rotations of the CrO6 units, which combine to relieve the local deformations of the chromium-oxygen octahedra. This coupling suggests new chemical "handles" by which the rotational distortions or A-site cation order of Ruddlesden-Popper phases can be directed to optimize physical behavior. Low-temperature neutron diffraction data and µ(+)SR data indicate La2SrCr2O7 adopts a G-type antiferromagnetically ordered state below TN ∼ 260 K.

6.
J Am Chem Soc ; 137(33): 10504-7, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26256148

RESUMO

A new deep-ultraviolet nonlinear optical material, RbMgCO3F, has been synthesized and characterized. The achiral nonpolar acentric material is second harmonic generation (SHG) active at both 1064 and 532 nm, with efficiencies of 160 × α-SiO2 and 0.6 × ß-BaB2O4, respectively, and exhibits a short UV cutoff, below 190 nm. RbMgCO3F possesses a three-dimensional structure of corner-shared Mg(CO3)2F2 polyhedra. Unlike other acentric carbonate fluorides, in this example, the inclusion of Mg(2+) creates pentagonal channels where the Rb(+) resides. Our electronic structure calculations reveal that the denticity of the carbonate linkage, monodentate or bidendate, to the divalent cation is a useful parameter for tuning the transparency window and achieving the sizable SHG response.

7.
J Am Chem Soc ; 137(2): 636-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25581015

RESUMO

A new niobium oxyfluoride, Nb2O2F3, synthesized through the reaction of Nb, SnO, and SnF2 in Sn flux, within welded Nb containers, crystallizes in a monoclinic structure (space group: I2/a; a = 5.7048(1)Å, b = 5.1610(1)Å, c = 12.2285(2)Å, ß = 95.751(1)°). It features [Nb2X10] units (X = O, F), with short (2.5739(1) Å) Nb-Nb bonds, that are linked through shared O/F vertices to form a 3D structure configurationally isotypic to ζ-Nb2O5. Nb2O2F3 undergoes a structural transition at ∼90 K to a triclinic structure (space group: P1̅; a = 5.1791(5)Å, b = 5.7043(6)Å, c = 6.8911(7)Å, α = 108.669(3)°, ß = 109.922(2)°, γ = 90.332(3)°). The transition is described as a disproportionation or charge ordering of [Nb2](7+) dimers: (2[Nb2](7+) → [Nb2](6+) + [Nb2](8+)), resulting in doubly (2.5000(9) Å) and singly bonded (2.6560(9) Å) Nb2 dimers. The structural transition is accompanied by an unusual field-independent "spin-gap-like" magnetic transition.

8.
Inorg Chem ; 54(3): 765-72, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25137441

RESUMO

The syntheses of two noncentrosymmetric (NCS) vanadium oxide-fluoride compounds that originate from the same synthetic reagent concentrations are presented. Hydrothermal and low-temperature syntheses allow the isolation of metastable products that may form new phases (or decompose) upon heating and allow creation of chemically similar but structurally different materials. NCS materials synthesis has been a long-standing goal in inorganic chemistry: in this article, we compare two chemically similar NCS inorganic materials, NaVOF(4)(H(2)O) (I) and NaVO(2-x)F(2+x) (II; x = 1/3). These materials originate from the same, identical reagent mixtures but are synthesized at different temperatures: 100 °C and 150 °C, respectively. Compound I crystallizes in Pna2(1): a = 9.9595(4) Å, b = 9.4423(3) Å, and c = 4.8186(2) Å. Compound II crystallizes in P2(1): a = 6.3742(3) Å, b = 3.5963(2) Å, c = 14.3641(7) Å, and ß = 110.787(3)°. Both materials display second-harmonic-generation activity; however, compound I is type 1 non-phase-matchable, whereas compound II is type 1 phase-matchable.

9.
Inorg Chem ; 54(8): 4011-20, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25823416

RESUMO

Four new oxovanadium(IV) tartrates, namely, A2[(VO)2(C4H4O6)(C4H2O6)(H2O)2]·(H2O)2, where A = Cs, 1, Rb, 2; K2[(VO)2(C4H2O6)2(H2O)2]·(H2O)2, 3; and Na2[(VO)2(C4H4O6)(C4H2O6)(H2O)7]·(H2O)2, 4, were prepared utilizing a two-step, mild hydrothermal route involving l-(+)-tartaric acid as the reducing agent. All four compounds were structurally characterized by single-crystal and powder X-ray diffraction methods and were found to crystallize in the non-centrosymmetric orthorhombic space groups P212121 for 1, 2, and 4 and C2221 for 3. The temperature dependence of the magnetic susceptibility of these compounds was measured, and 1, 2, and 4 were found to be paramagnetic down to 2 K, while 3 was found to exhibit spin-dimer behavior. Compounds 1, 2, and 3 were found to be second harmonic generation active. All compounds were further characterized by IR and UV-vis spectroscopies.

10.
Inorg Chem ; 53(12): 6241-51, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24867361

RESUMO

Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet-visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6m2 (crystal class 6m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even-odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb(2+). The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates.


Assuntos
Carbonatos/química , Césio/química , Fluoretos/química , Chumbo/química , Rubídio/química , Cristalografia por Raios X , Análise Diferencial Térmica , Modelos Moleculares , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
11.
J Am Chem Soc ; 135(32): 11942-50, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23865561

RESUMO

For a crystal to exhibit nonlinear optical (NLO) activity such as second-harmonic generation (SHG), it must belong to a noncentrosymmetric (NCS) space group. Moreover, for these nonlinear optical (NLO) materials to be suitable for practical uses, the synthesized crystals should be phase-matchable (PM). Previous synthetic research into SHG-active crystals has centered on (i) how to create NCS compounds and/or (ii) how to obtain NCS compounds with high SHG efficiencies. With these tactics, one can synthesize a material with a high SHG efficiency, but the material could be unusable if the material was nonphase-matchable (non-PM). To probe the origin of phase matchability of NCS structures, we present two new chemically similar hybrid compounds within one composition space: (I) [Hdpa]2NbOF5·2H2O and (II) HdpaNbOF4 (dpa = 2,2'-dipyridylamine). Both compounds are NCS and chemically similar, but (I) is non-PM while (II) is PM. Our results indicate--consistent with organic crystallography--the arrangement of the organic molecule within hybrid materials dictates whether the material is PM or non-PM.

12.
Inorg Chem ; 52(5): 2466-73, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23394454

RESUMO

Two new potassium lead fluoride carbonates, KPb2(CO3)2F and K2.70Pb5.15(CO3)5F3, have been synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. KPb2(CO3)2F and K2.70Pb5.15(CO3)5F3 were structurally characterized by single crystal X-ray diffraction and exhibit two-dimensional crystal structures consisting of corner-shared PbO6F and PbO6F2 polyhedra. K2.70Pb5.15(CO3)5F3 is noncentrosymmetric, and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class -6m2). Powder second-harmonic generation (SHG) measurements using 1064 nm radiation revealed a SHG efficiency of approximately 40 × α-SiO2, whereas a charge constant, d33, of approximately 20 pm/V was obtained through converse piezoelectric measurements. For the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed.

13.
Inorg Chem ; 52(23): 13762-9, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24229386

RESUMO

The synthesis and characterization of two cation-ordered, anion-vacancy ordered phases, Ba2YCoO5 and Ba3YCo2O7.5, is described. Neutron powder diffraction data reveal both phases adopt structures in which octahedral Y(3+) and tetrahedral Co(3+) centers are ordered within a "cubic" perovskite lattice. The unusual ordered pattern adopted by the cations can be attributed to the large concentration of anion vacancies within each phase. Reaction of Ba2YCoO5 with CuF2 under flowing oxygen topochemically inserts fluorine into the host material to form Ba2YCoO5F0.42(1). In contrast Ba2YCoO5 does not intercalate oxygen, even under high oxygen pressure. The selective insertion of fluorine, but not oxygen, into Ba2YCoO5 is discussed and rationalized on the basis of the lattice strain of the resulting oxidized materials. Magnetization and neutron diffraction data reveal Ba3YCo2O7.5 and Ba2YCoO5F0.42 adopt antiferromagnetically ordered states at low-temperature, while in contrast Ba2YCoO5 shows no sign of long-range magnetic order.

14.
Inorg Chem ; 52(10): 6179-86, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23659551

RESUMO

Cesium vanadate, Cs2V3O8, a member of the fresnoite-type structure, was synthesized via a hydrothermal route and structurally characterized by single-crystal X-ray diffraction. Cs2V3O8 crystallizes in a noncentrosymmetric polar space group, P4bm, with crystal data of a = 8.9448(4) Å, c = 6.0032(3) Å, V = 480.31(4) Å(3), and Z = 2. The material exhibits a two-dimensional layered crystal structure consisting of corner-shared V(5+)O4 and V(4+)O5 polyhedra. The layers are separated by the cesium cations. The alignment of the individual polyhedra results in a macroscopic polarity for Cs2V3O8. Frequency-dependent polarization measurements indicate that the material is not ferroelectric. A pyroelectric coefficient of -2.0 µC m(-2) K(-1) was obtained from pyroelectric measurements taken as a function of the temperature. The magnetic susceptibility data were measured as a function of the temperature and yielded an effective magnetic moment of 1.78 µB for the V(4+) cation. Short-range magnetic ordering was observed around 7 K. The susceptibility data were fit to the Heisenberg square-lattice model supporting that the short-range magnetic interactions are antiferromagnetic and two-dimensional. IR and thermal properties were also characterized.

15.
Inorg Chem ; 52(17): 10041-51, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23941215

RESUMO

The reactions of (S)-2-(1,8-naphthalimido)propanoic acid (HL(ala)) and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoic acid (HL(ser)), protonated forms of ligands that contain a carboxylate donor group, an enantiopure chiral center, and a 1,8-naphthalimide π···π stacking supramolecular tecton and in the case of HL(ser) an alcohol functional group, with the appropriate alkali metal hydroxide followed by a variety of crystallization methods leads to the formation of crystalline K(L(ala))(MeOH) (1), K(L(ala))(H2O) (2), Na(L(ala))(H2O) (3), KL(ser) (4), CsL(ser) (5), and CsL(ala) (6). Each of these new complexes has a solid state structure based on six-coordinate metals linked into homochiral helical rod secondary building unit (SBU) central cores. In addition to the bonding of the carboxylate and solvent (in the case of L(ser) the ligand alcohol) to the metals, both oxygens on the 1,8-naphthalimide act as donor groups. One naphthalimide oxygen bonds to the same helical rod SBU as the carboxylate group of that ligand forming a chelate ring. The other naphthalimide oxygen bonds to adjacent SBUs. In complexes 1-3, this inter-rod link has a square arrangement bonding four other rods forming a three-dimensional enantiopure metal-organic framework (MOF) structure, whereas in 4-6 this link has a linear arrangement bonding two other rods forming a two-dimensional, sheet structure. In the latter case, the third dimension is supported exclusively by interdigitated π···π stacking interactions of the naphthalimide supramolecular tecton, forming enantiopure supramolecular MOF solids. Compounds 1-3 lose the coordinated solvent when heating above 100 °C. For 1, the polycrystalline powder reverts to 1 only by recrystallization from methanol, whereas compounds 2 and 3 undergo gas/solid, single-crystal to single-crystal transformations to form dehydrated compounds 2* and 3*, and rehydration occurs when crystals of these new complexes are left out in air. The reversible single-crystal to single-crystal transformation of 2 involves the dissociation/coordination of a terminal water ligand, but the case of 3 is remarkable considering that the water that is lost is the only bridging ligand between the metals in the helical rod SBU and a carboxylate oxygen that is a terminal ligand in 3 moves into a bridging position in 3* to maintain the homochiral helical rods. Both 2* and 3* contain five-coordinate metals. There are no coordinated solvents in compounds 4-6, in two cases by designed ligand modification, which allows them to have high thermal stability. Compounds 1-3 did not exhibit observable Second Harmonic Generation (SHG) efficiency at an incident wavelength of 1064 nm, but compounds 4-6 did exhibit modest SHG efficiency for MOF-like compounds in the range of 30 × α-SiO2.

16.
Inorg Chem ; 52(15): 8303-5, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23834284

RESUMO

A new noncentrosymmetric U(4+)-containing fluoride, U3F12(H2O), has been synthesized via a mild hydrothermal route and its crystal structure determined by single-crystal X-ray diffraction. The material exhibits a complex three-dimensional structure that is based on [U6F33(H2O)2)](9-) hexanuclear building units consisting of corner- and edge-shared UF8, UF9, and UOF7 polyhedra. Powder second-harmonic generation (SHG) measurements revealed that the SHG efficiency for U3F12(H2O) is comparable to that of α-SiO2. Magnetic susceptibility measurements indicated that the U(4+)(f(2))-containing material exhibits a singlet ground state at low temperature. IR and UV-vis reflectance spectra were obtained, and the thermal behavior was investigated by thermogravimetric analysis.

17.
Inorg Chem ; 52(21): 12482-91, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138134

RESUMO

We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P2(1) space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below T(N) ≈ 25 K for NaLaFeWO6 and at ∼21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = ((1/2) 0 (1/2)) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.

18.
Inorg Chem ; 51(19): 10402-7, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22984919

RESUMO

Solid solutions of the noncentrosymmetric (NCS) Aurivillius phases, Bi(4-x)La(x)Ti(3)O(12) (x = 0, 0.25, 0.50, 0.75), have been synthesized through standard solid-state reactions and structurally characterized by powder X-ray and neutron diffractions. These materials crystallize in the orthorhombic space group B2cb (No. 41) and exhibit layered perovskite structures with both (Bi(2)O(2))(2+) fluorite-like units and [A(n-1)B(n)O(3n+1)](2-) (n = 3) blocks. As the amount of La(3+) cations increases, the polarization arising from the Bi(3+) positions, especially the A sites of the perovskite units, continuously decreases in the reported materials. Powder second-harmonic generation (SHG) measurements on Bi(4-x)La(x)Ti(3)O(12) using 1064 nm radiation revealed frequency-doubling efficiencies ranging from 200 to 50 times that of α-SiO(2). Converse piezoelectric measurements resulted in d(33) values of 19 and 13 pm V(-1) for Bi(4)Ti(3)O(12) and Bi(3.5)La(0.5)Ti(3)O(12), respectively. The magnitudes of the SHG efficiency and piezoelectric response are strongly dependent on the asymmetric coordination environment attributable to the lone pairs on Bi(3+). Structure-property relationships along with the influence of the doped foreign cation on the associated NCS properties are discussed.

19.
Adv Mater ; 31(40): e1903620, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31389099

RESUMO

Since the observation that the properties of ferroic domain walls (DWs) can differ significantly from the bulk materials in which they are formed, it has been realized that domain wall engineering offers exciting new opportunities for nanoelectronics and nanodevice architectures. Here, a novel improper ferroelectric, CsNbW2 O9 , with the hexagonal tungsten bronze structure, is reported. Powder neutron diffraction and symmetry mode analysis indicate that the improper transition (TC = 1100 K) involves unit cell tripling, reminiscent of the hexagonal rare earth manganites. However, in contrast to the manganites, the symmetry breaking in CsNbW2 O9 is electronically driven (i.e., purely displacive) via the second-order Jahn-Teller effect in contrast to the geometrically driven tilt mechanism of the manganites. Nevertheless CsNbW2 O9 displays the same kinds of domain microstructure as those found in the manganites, such as the characteristic six-domain "cloverleaf" vertices and DW sections with polar discontinuities. The discovery of a completely new material system, with domain patterns already known to generate interesting functionality in the manganites, is important for the emerging field of DW nanoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA