Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 9(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766341

RESUMO

The aim of this study was to characterize uterine, fecal, bedding, and airborne dust microbiota from postpartum dairy cows and their environment. The cows were managed by the free-stall housing system, and samples for microbiota and serum metabolite assessment were collected during summer and winter when the cows were at one and two months postpartum. Uterine microbiota varied between seasons; the five most prevalent taxa were Enterobacteriaceae, Moraxellaceae, Ruminococcaceae, Staphylococcaceae, and Lactobacillaceae during summer, and Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, Moraxellaceae, and Clostridiaceae during winter. Although Actinomycetaceae and Mycoplasmataceae were detected at high abundance in several uterine samples, the relationship between the uterine microbiota and serum metabolite concentrations was unclear. The fecal microbiota was stable regardless of the season, whereas bedding and airborne dust microbiota varied between summer and winter. With regards to uterine, bedding, and airborne dust microbiota, Enterobacteriaceae, Moraxellaceae, Staphylococcaceae, and Lactobacillaceae were more abundant during summer, and Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and Clostridiaceae were more abundant during winter. Canonical analysis of principal coordinates confirmed the relationship between uterine and cowshed microbiota. These results indicated that the uterine microbiota may vary when the microbiota in cowshed environments changes.

2.
Anim Sci J ; 90(3): 445-452, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656804

RESUMO

Microbiota of the gut, milk, and cowshed environment were examined at two dairy farms managed by automatic milking systems (AMS). Feed, rumen fluid, feces, milk, bedding, water, and airborne dust were collected and the microbiota on each was assessed by Illumina MiSeq sequencing. The most abundant taxa in feed, rumen fluid, feces, bedding, and water were Lactobacillaceae, Prevotellaceae, Ruminococcaceae, Ruminococcaceae, and Lactobacillaceae, respectively, at both farms. Aerococcaceae was the most abundant taxon in milk and airborne dust microbiota at farm 1, and Staphylococcaceae and Lactobacillaceae were the most abundant taxa in milk and airborne dust microbiota at farm 2. The three most prevalent taxa (Aerococcaceae, Staphylococcaceae, and Ruminococcaceae at farm 1 and Staphylococcaceae, Lactobacillaceae, and Ruminococcaceae at farm 2) were shared between milk and airborne dust microbiota. Indeed, SourceTracker indicated that milk microbiota was related with airborne dust microbiota. Meanwhile, hierarchical clustering and canonical analysis of principal coordinates demonstrated that the milk microbiota was associated with the bedding microbiota but clearly separated from feed, rumen fluid, feces, and water microbiota. Although our findings were derived from only two case studies, the importance of cowshed management for milk quality control and mastitis prevention was emphasized at farms managed by AMS.


Assuntos
Microbiologia do Ar , Ração Animal/microbiologia , Criação de Animais Domésticos , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Roupas de Cama, Mesa e Banho/microbiologia , Roupas de Cama, Mesa e Banho/veterinária , Extração de Leite/métodos , Bovinos , Indústria de Laticínios/métodos , Poeira , Fazendas , Fezes/microbiologia , Abrigo para Animais , Leite/microbiologia , Rúmen/microbiologia , Microbiologia da Água , Animais , Feminino , Qualidade dos Alimentos , Mastite Bovina/prevenção & controle , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA