Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024522

RESUMO

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Ustilaginales/metabolismo , Animais , Proteínas de Plantas/metabolismo
2.
Microb Cell Fact ; 16(1): 192, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121935

RESUMO

BACKGROUND: First generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers' grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improve the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate 'one-pot' bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains. RESULTS: The carbohydrate conversion strain E. coli BLF2 was constructed from the wild type E. coli strain B and showed improved capability to produce fusel alcohols from hexose and pentose sugars. Up to 12 g/L fusel alcohols was produced from glucose or xylose synthetic medium by E. coli BLF2. The second strain, E. coli AY3, was dedicated for utilization of proteins in the hydrolysates to produce mixed C4 and C5 alcohols. To maximize conversion yield by the co-culture, the inoculation ratio between the two strains was optimized. The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the highest total fusel alcohol titer of up to 10.3 g/L from DGS hydrolysates. The engineered E. coli co-culture system was shown to be similarly applicable for biofuel production from other biomass sources, including algae hydrolysates. Furthermore, the co-culture population dynamics revealed by quantitative PCR analysis indicated that despite the growth rate difference between the two strains, co-culturing didn't compromise the growth of each strain. The q-PCR analysis also demonstrated that fermentation with an appropriate initial inoculation ratio of the two strains was important to achieve a balanced co-culture population which resulted in higher total fuel titer. CONCLUSIONS: The efficient conversion of DGS hydrolysates into fusel alcohols will significantly improve the feasibility of the first generation bioethanol process. The integrated carbohydrate and protein conversion platform developed here is applicable for the bioconversion of a variety of biomass feedstocks rich in sugars and proteins.


Assuntos
Biocombustíveis , Escherichia coli/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Biocatálise , Metabolismo dos Carboidratos , Técnicas de Cocultura , Grão Comestível , Etanol/metabolismo , Fermentação , Consórcios Microbianos , Amido/metabolismo , Xilose/metabolismo
3.
Anal Biochem ; 438(1): 90-6, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23535274

RESUMO

To fully understand the interactions of a pathogen with its host, it is necessary to analyze the RNA transcripts of both the host and pathogen throughout the course of an infection. Although this can be accomplished relatively easily on the host side, the analysis of pathogen transcripts is complicated by the overwhelming amount of host RNA isolated from an infected sample. Even with the read depth provided by second-generation sequencing, it is extremely difficult to get enough pathogen reads for an effective gene-level analysis. In this study, we describe a novel capture-based technique and device that considerably enriches for pathogen transcripts from infected samples. This versatile method can, in principle, enrich for any pathogen in any infected sample. To test the technique's efficacy, we performed time course tissue culture infections using Rift Valley fever virus and Francisella tularensis. At each time point, RNA sequencing (RNA-Seq) was performed and the results of the treated samples were compared with untreated controls. The capture of pathogen transcripts, in all cases, led to more than an order of magnitude enrichment of pathogen reads, greatly increasing the number of genes hit, the coverage of those genes, and the depth at which each transcript was sequenced.


Assuntos
Francisella tularensis/genética , Francisella tularensis/fisiologia , Interações Hospedeiro-Patógeno , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/fisiologia , Análise de Sequência de RNA/métodos , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Macrófagos/virologia , Hibridização de Ácido Nucleico , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Viral/genética
4.
J Fungi (Basel) ; 9(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983539

RESUMO

Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.

5.
Bioresour Technol ; 283: 350-357, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30933901

RESUMO

Improving the economic feasibility is necessary for algae-based processes to achieve commercial scales for biofuels and bioproducts production. A closed-loop system for fusel alcohol production from microalgae biomass with integrated nutrient recycling was developed, which enables the reuse of nitrogen and phosphorus for downstream application and thus reduces the operational requirement for external major nutrients. Mixed fusel alcohols, primarily isobutanol and isopentanol were produced from Microchloropsis salina hydrolysates by an engineered E. coli co-culture. During the process, cellular nitrogen from microalgae biomass was converted into ammonium, whereas cellular phosphorus was liberated by an osmotic shock treatment. The formation of struvite from the liberated ammonium and phosphate, and the subsequent utilization of struvite to support M. salina cultivation was demonstrated. The closed loop system established here should help overcome one of the identified economic barriers to scale-up of microalgae production, and enhance the sustainability of microalgae-based chemical commodities production.


Assuntos
Álcoois/metabolismo , Biomassa , Microalgas/metabolismo , Nutrientes/metabolismo , Estramenópilas/metabolismo , Escherichia coli/metabolismo , Microalgas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Reciclagem , Estramenópilas/crescimento & desenvolvimento , Estruvita/metabolismo
6.
Front Microbiol ; 7: 1155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507966

RESUMO

Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are "keystone" OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota associated with N. salina cultures and how these structures change in response to chemical perturbations.

7.
PLoS One ; 8(10): e77834, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155975

RESUMO

Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.


Assuntos
Francisella tularensis/genética , Francisella tularensis/fisiologia , Macrófagos/microbiologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Tularemia/genética , Tularemia/microbiologia , Animais , Regulação para Baixo/genética , Francisella tularensis/patogenicidade , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Ilhas Genômicas/genética , Humanos , Macrófagos/patologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA