Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2303423120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150501

RESUMO

The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.

2.
Phys Rev Lett ; 126(17): 177601, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988428

RESUMO

Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.

3.
Phys Rev Lett ; 125(2): 027201, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701305

RESUMO

We measure the mode-resolved direction of the precessional motion of the magnetic order, i.e., magnon polarization, via the chiral term of inelastic polarized neutron scattering spectra. The magnon polarization is a unique and unambiguous signature of magnets and is important in spintronics, affecting thermodynamic properties such as the magnitude and sign of the spin Seebeck effect. However, it has never been directly measured in any material until this work. The observation of both signs of magnon polarization in Y_{3}Fe_{5}O_{12} also gives direct proof of its ferrimagnetic nature. The experiments agree very well with atomistic simulations of the scattering cross section.

4.
Phys Rev Lett ; 125(9): 097005, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915617

RESUMO

We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La_{2-x}Ba_{x}CuO_{4} with x=0.115. An extremely low uniaxial stress of ∼0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from ∼10 to 32 K; however, the onset of at-least-2D superconductivity is much less sensitive to stress. These results show not only that large-volume-fraction spin-stripe order is anticorrelated with 3D superconducting coherence but also that these states are energetically very finely balanced. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. These results strongly suggest a similar pairing mechanism for spin-stripe order and the spatially modulated 2D and uniform 3D superconducting orders, imposing an important constraint on theoretical models.

5.
Phys Rev Lett ; 118(17): 177601, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498689

RESUMO

Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x=0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.

6.
Phys Rev Lett ; 119(8): 087002, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952761

RESUMO

We report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T_{so} decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO_{2} plane. Moreover, T_{so} is suppressed by Zn in the same manner as the superconducting transition temperature T_{c} for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent on intertwining with superconducting correlations.

7.
Phys Rev Lett ; 117(16): 167001, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792368

RESUMO

The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially modulated superconducting wave function. We test the dynamics of CDW order in La_{1.825}Ba_{0.125}CuO_{4} by using x-ray photon correlation spectroscopy at the CDW wave vector, detected resonantly at the Cu L_{3} edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2 ¾ h. We discuss the implications of these results for some of the competing theories.

8.
Phys Rev Lett ; 113(17): 177002, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379931

RESUMO

The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x).

9.
Phys Rev Lett ; 112(4): 047003, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580482

RESUMO

High resolution polar Kerr effect measurements were performed on La1.875Ba0.125CuO4 single crystals revealing that a finite Kerr signal is measured below an onset temperature TK that coincides with the charge ordering transition temperature TCO. We further show that the sign of the Kerr signal cannot be trained with the magnetic field, is found to be the same on opposite sides of the same crystal, and is odd with respect to strain in the diagonal direction of the unit cell. These observations are consistent with a chiral "gyrotropic" order above Tc for La1.875Ba0.125CuO4; similarities to other cuprates suggest that it is a universal property in the pseudogap regime.

10.
Phys Rev Lett ; 110(1): 017004, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383829

RESUMO

We have performed inelastic neutron scattering measurements on the single-layer cuprate Bi(2+x) Sr(2-x) CuO(6+y) (Bi2201) with x = 0.2, 0.3, 0.4, and 0.5, a doping range that spans the spin-glass to superconducting phase boundary. The doping evolution of low energy spin fluctuations (11

11.
Phys Rev Lett ; 109(14): 147001, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083268

RESUMO

Recent experiments on the original cuprate high-temperature superconductor, La(2-x)Ba(x)CuO4, revealed a remarkable sequence of phase transitions. Here we investigate such crystals with the polar Kerr effect, which is sensitive to time-reversal-symmetry breaking. Concurrent birefringence measurements accurately locate the structural phase transitions from high-temperature tetragonal to low-temperature orthorhombic, and then to lower-temperature tetragonal, at which temperature strong Kerr signal onsets. Hysteretic behavior of the Kerr signal suggests that time-reversal symmetry is already broken well above room temperature, an effect that was previously observed in high quality YBa2Cu3O(6+x) crystals.

12.
Phys Rev Lett ; 109(22): 227002, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23368150

RESUMO

Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.

13.
Nature ; 440(7088): 1170-3, 2006 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-16641991

RESUMO

The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.

14.
Phys Rev Lett ; 107(27): 277001, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22243323

RESUMO

The striped cuprate La(2-x)Ba(x)CuO(4) (x=1/8) undergoes several transitions below the charge-ordering temperature T(co)=54 K. From Nernst experiments, we find that, below T(co), there exists a large, anomalous Nernst signal e(N,even)(H,T) that is symmetric in field H, and remains finite as H→0. The time-reversal violating signal suggests that, below T(co), vortices of one sign are spontaneously created to relieve interlayer phase frustration.

15.
Phys Rev Lett ; 104(5): 057004, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366788

RESUMO

In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry.

16.
Nature ; 429(6991): 534-8, 2004 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15175745

RESUMO

In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

17.
J Phys Condens Matter ; 32(37): 374003, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412327

RESUMO

Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe1+y Te1-x Se x and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe1+y Te1-x Se x , where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hund's metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.

18.
Sci Adv ; 5(6): eaav7686, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31214648

RESUMO

Do charge modulations compete with electron pairing in high-temperature copper oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultraquantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates.

19.
Nat Commun ; 10(1): 1435, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926816

RESUMO

Although CDW correlations are a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for pinning the CDW to the lattice. Here, we report coherent resonant X-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition creates inequivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to far higher temperatures. That memory is only lost on cycling to 240(3) K, which recovers the four-fold symmetry of the CuO2 planes. We infer that the structural features that develop below 240 K determine the CDW pinning landscape below 54 K. This opens a view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.

20.
Sci Rep ; 6: 37624, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874069

RESUMO

The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA