Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791952

RESUMO

The Wnt receptor ROR1 has generated increased interest as a cancer therapeutic target. Research on several therapeutic approaches involving this receptor is ongoing; however, ROR1 tissue expression remains understudied. We performed an immunohistochemistry analysis of ROR1 protein expression in a large cohort of multiple tumor and histologic types. We analyzed 12 anonymized multi-tumor tissue microarrays (TMAs), including mesothelioma, esophageal and upper gastrointestinal carcinomas, and uterine endometrioid carcinoma, among other tumor types. Additionally, we studied 5 different sarcoma types of TMAs and 6 patient-derived xenografts (PDX) TMAs developed from 19 different anatomic sites and tumor histologic types. A total of 1142 patient cases from different histologic types and 140 PDXs placed in TMAs were evaluated. Pathologists assessed the percentage of tumor cells in each case that were positive for ROR1 and the intensity of staining. For determining the prevalence of staining for each tumor type, a case was considered positive if >1% of its tumor cells showed ROR1 staining. Our immunohistochemistry assays revealed a heterogeneous ROR1 expression profile. A high prevalence of ROR1 expression was found in mesothelioma (84.6%), liposarcoma (36.1%), gastrointestinal stromal tumors (33.3%), and uterine endometrioid carcinoma (28.9%). Other histologic types such as breast, lung, renal cell, hepatocellular, urothelial carcinoma, and colon carcinomas; glioblastoma; cholangiocarcinoma; and leiomyosarcoma showed less ROR1 overall expression, ranging between 0.9 and 13%. No ROR1 expression was seen in mesenchymal chondrosarcoma, rhabdomyosarcoma, or gastric adenocarcinoma cases. Overall, ROR1 expression was relatively infrequent and low in most tumor types investigated; however, ROR1 expression was infrequent but high in selected tumor types, such as gastroesophageal GIST, suggesting that ROR1 prescreening may be preferable for those indications. Further, mesothelioma exhibited frequent and high levels of ROR1 expression, which represents a previously unrecognized therapeutic opportunity. These findings can contribute to the development of ROR1-targeted therapies.

2.
Cancer Res Commun ; 4(6): 1548-1560, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727236

RESUMO

KRAS inhibitors have demonstrated exciting preclinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KrasG12D, p53-mutant, murine pancreatic ductal adenocarcinoma-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intratumoral CD8+ T cells without durable responses. Single-cell RNA sequencing revealed an increase in inflammatory cancer-associated fibroblasts (iCAF), M2 macrophages, and a decreased dendritic cell (DC) quality that ultimately resulted in a highly immunosuppressive microenvironment driven by IL6+ iCAFs. Agonist CD40 treatment was effective to revert macrophage polarization and overcome the lack of mature antigen-presenting DCs after SOS1i+MEKi therapy. Treatment increased the overall survival of KPCY tumor-bearing mice. The addition of checkpoint blockade to SOS1i+MEKi combination resulted in tumor-free mice with established immune memory. Our data suggest that KRAS inhibition affects myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong antitumor effects. SIGNIFICANCE: Combination of SOS1 and MEK inhibitors increase T cell infiltration while blunting pro-immune myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong anti-tumor effects.


Assuntos
Carcinoma Ductal Pancreático , Imunoterapia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Proteína SOS1 , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Imunoterapia/métodos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino
3.
J Med Chem ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102508

RESUMO

Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound 26, that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments. Evaluation of 26 as a single agent in Mcl-1 sensitive hematological and solid tumor xenograft models resulted in regressions. Co-treatment of Mcl-1-sensitive and Mcl-1 insensitive lung cancer derived xenografts with 26 and docetaxel or topotecan, respectively, resulted in an enhanced tumor response. These findings support the premise that pro-apoptotic priming of tumor cells by other therapies in combination with Mcl-1 inhibition may significantly expand the subset of cancers in which Mcl-1 inhibitors may prove beneficial.

4.
Nat Cancer ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103541

RESUMO

Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA