Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Neuroimage ; 277: 120227, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321357

RESUMO

Transcranial focused Ultrasound Stimulation (TUS) at low intensities is emerging as a novel non-invasive brain stimulation method with higher spatial resolution than established transcranial stimulation methods and the ability to selectively stimulate also deep brain areas. Accurate control of the focus position and strength of the TUS acoustic waves is important to enable a beneficial use of the high spatial resolution and to ensure safety. As the human skull causes strong attenuation and distortion of the waves, simulations of the transmitted waves are needed to accurately determine the TUS dose distribution inside the cranial cavity. The simulations require information of the skull morphology and its acoustic properties. Ideally, they are informed by computed tomography (CT) images of the individual head. However, suited individual imaging data is often not readily available. For this reason, we here introduce and validate a head template that can be used to estimate the average effects of the skull on the TUS acoustic wave in the population. The template was created from CT images of the heads of 29 individuals of different ages (between 20-50 years), gender and ethnicity using an iterative non-linear co-registration procedure. For validation, we compared acoustic and thermal simulations based on the template to the average of the simulation results of all 29 individual datasets. Acoustic simulations were performed for a model of a focused transducer driven at 500 kHz, placed at 24 standardized positions by means of the EEG 10-10 system. Additional simulations at 250 kHz and 750 kHz at 16 of the positions were used for further confirmation. The amount of ultrasound-induced heating at 500 kHz was estimated for the same 16 transducer positions. Our results show that the template represents the median of the acoustic pressure and temperature maps from the individuals reasonably well in most cases. This underpins the usefulness of the template for the planning and optimization of TUS interventions in studies of healthy young adults. Our results further indicate that the amount of variability between the individual simulation results depends on the position. Specifically, the simulated ultrasound-induced heating inside the skull exhibited strong interindividual variability for three posterior positions close to the midline, caused by a high variability of the local skull shape and composition. This should be taken into account when interpreting simulation results based on the template.


Assuntos
Encéfalo , Crânio , Humanos , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia , Simulação por Computador , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Ultrassonografia/métodos , Acústica
2.
J Acoust Soc Am ; 153(1): 517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732249

RESUMO

The development of methods to safely rewarm large cryopreserved biological samples remains a barrier to the widespread adoption of cryopreservation. Here, experiments and simulations were performed to demonstrate that ultrasound can increase rewarming rates relative to thermal conduction alone. An ultrasonic rewarming setup based on a custom 444 kHz tubular piezoelectric transducer was designed, characterized, and tested with 2 ml cryovials filled with frozen ground beef. Rewarming rates were characterized in the -20 °C to 5 °C range. Thermal conduction-based rewarming was compared to thermal conduction plus ultrasonic rewarming, demonstrating a tenfold increase in rewarming rate when ultrasound was applied. The maximum recorded rewarming rate with ultrasound was 57° C/min, approximately 2.5 times faster than with thermal conduction alone. Coupled acoustic and thermal simulations were developed and showed good agreement with the heating rates demonstrated experimentally and were also used to demonstrate spatial heating distributions with small (<3° C) temperature differentials throughout the sample when the sample was below 0° C. The experiments and simulations demonstrate the potential for ultrasonic cryovial rewarming with a possible application to large volume rewarming, as faster rewarming rates may improve the viability of cryopreserved tissues and reduce the time needed for cells to regain normal function.


Assuntos
Reaquecimento , Ultrassom , Animais , Bovinos , Criopreservação/métodos , Temperatura , Transdutores
3.
J Acoust Soc Am ; 152(2): 1003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36050189

RESUMO

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.


Assuntos
Benchmarking , Transdutores , Simulação por Computador , Crânio/diagnóstico por imagem , Ultrassonografia/métodos
4.
J Acoust Soc Am ; 150(4): 2798, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717448

RESUMO

Over the past decade, the range of applications in biomedical ultrasound exploiting 3D printing has rapidly expanded. For wavefront shaping specifically, 3D printing has enabled a diverse range of new, low-cost approaches for controlling acoustic fields. These methods rely on accurate knowledge of the bulk acoustic properties of the materials; however, to date, robust knowledge of these parameters is lacking for many materials that are commonly used. In this work, the acoustic properties of eight 3D-printed photopolymer materials were characterised over a frequency range from 1 to 3.5 MHz. The properties measured were the frequency-dependent phase velocity and attenuation, group velocity, signal velocity, and mass density. The materials were fabricated using two separate techniques [PolyJet and stereolithograph (SLA)], and included Agilus30, FLXA9960, FLXA9995, Formlabs Clear, RGDA8625, RGDA8630, VeroClear, and VeroWhite. The range of measured density values across all eight materials was 1120-1180 kg · m-3, while the sound speed values were between 2020 to 2630 m · s-1, and attenuation values typically in the range 3-9 dB · MHz-1· cm-1.

5.
J Acoust Soc Am ; 149(4): 2732, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33940866

RESUMO

Laser-generated focused ultrasound (LGFU) transducers used for ultrasound therapy commonly have large diameters (6-15 mm), but smaller lateral dimensions (<4 mm) are required for interventional applications. To address the question of whether miniaturized LGFU transducers could generate sufficient pressure at the focus to enable therapeutic effects, a modelling and measurement study is performed. Measurements are carried out for both linear and nonlinear propagation for various illumination schemes and compared with the model. The model comprises several innovations. First, the model allows for radially varying acoustic input distributions on the surface of the LGFU transducer, which arise from the excitation light impinging on the curved transducer surfaces. This realistic representation of the source prevents the overestimation of the achievable pressures (shown here to be as high as 1.8 times). Second, an alternative inverse Gaussian illumination paradigm is proposed to achieve higher pressures; a 35% increase is observed in the measurements. Simulations show that LGFU transducers as small as 3.5 mm could generate sufficient peak negative pressures at the focus to exceed the cavitation threshold in water and blood. Transducers of this scale could be integrated with interventional devices, thereby opening new opportunities for therapeutic applications from inside the body.


Assuntos
Transdutores , Terapia por Ultrassom , Acústica , Lasers
6.
J Acoust Soc Am ; 148(4): 2288, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33138501

RESUMO

A full-wave model for nonlinear ultrasound propagation through a heterogeneous and absorbing medium in an axisymmetric coordinate system is developed. The model equations are solved using a nonstandard or k-space pseudospectral time domain method. Spatial gradients in the axial direction are calculated using the Fourier collocation spectral method, and spatial gradients in the radial direction are calculated using discrete trigonometric transforms. Time integration is performed using a k-space corrected finite difference scheme. This scheme is exact for plane waves propagating linearly in the axial direction in a homogeneous and lossless medium and significantly reduces numerical dispersion in the more general case. The implementation of the model is described, and performance benchmarks are given for a range of grid sizes. The model is validated by comparison with several analytical solutions. This includes one-dimensional absorption and nonlinearity, the pressure field generated by plane-piston and bowl transducers, and the scattering of a plane wave by a sphere. The general utility of the model is then demonstrated by simulating nonlinear transcranial ultrasound using a simplified head model.

7.
J Acoust Soc Am ; 145(3): 1270, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31067926

RESUMO

Accurate measurements of acoustic pressure are required for characterisation of ultrasonic transducers and for experimental validation of models of ultrasound propagation. Errors in measured pressure can arise from a variety of sources, including variations in the properties of the source and measurement equipment, calibration uncertainty, and processing of measured data. In this study, the repeatability of measurements made with four probe and membrane hydrophones was examined. The pressures measured by these hydrophones in three different ultrasound fields, with both linear and nonlinear, pulsed and steady state driving conditions, were compared to assess the reproducibility of measurements. The coefficient of variation of the focal peak positive pressure was less than 2% for all hydrophones across five repeated measurements. When comparing hydrophones, pressures measured in a spherically focused 1.1 MHz field were within 7% for all except 1 case, and within 10% for a broadband 5 MHz pulse from a diagnostic linear array. Larger differences of up to 55% were observed between measurements of a tightly focused 3.3 MHz field, which were reduced for some hydrophones by the application of spatial averaging corrections. Overall, the major source of these differences was spatial averaging and uncertainty in the complex frequency response of the hydrophones.


Assuntos
Acústica/instrumentação , Ultrassonografia/normas , Algoritmos , Reprodutibilidade dos Testes , Ondas Ultrassônicas , Ultrassonografia/instrumentação , Ultrassonografia/métodos
8.
J Acoust Soc Am ; 146(1): 278, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370581

RESUMO

Accurately representing acoustic source distributions is an important part of ultrasound simulation. This is challenging for grid-based collocation methods when such distributions do not coincide with the grid points, for instance when the source is a curved, two-dimensional surface embedded in a three-dimensional domain. Typically, grid points close to the source surface are defined as source points, but this can result in "staircasing" and substantial errors in the resulting acoustic fields. This paper describes a technique for accurately representing arbitrary source distributions within Fourier collocation methods. The method works by applying a discrete, band-limiting convolution operator to the continuous source distribution, after which source grid weights can be generated. This allows arbitrarily shaped sources, for example, focused bowls and circular pistons, to be defined on the grid without staircasing errors. The technique is examined through simulations of a range of ultrasound sources, and comparisons with analytical solutions show excellent accuracy and convergence rates. Extensions of the technique are also discussed, including application to initial value problems, distributed sensors, and moving sources.

9.
J Acoust Soc Am ; 144(2): 584, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180662

RESUMO

The characterization of ultrasound fields generated by diagnostic and therapeutic equipment is an essential requirement for performance validation and to demonstrate compliance against established safety limits. This requires hydrophones calibrated to a traceable standard. Currently, the upper calibration frequency range available to the user community is limited to 60 MHz. However, high frequencies are increasingly being used for both imaging and therapy necessitating calibration frequencies up to 100 MHz. The precise calibration of hydrophones requires a source of high amplitude, broadband, quasi-planar, and stable ultrasound fields. There are challenges to using conventional piezoelectric sources, and laser generated ultrasound sources offer a promising solution. In this study, various nanocomposites consisting of a bulk polymer matrix and multi-walled carbon nanotubes were fabricated and tested using pulsed laser of a few nanoseconds for their suitability as a source for high frequency calibration of hydrophones. The pressure amplitude and bandwidths were measured using a broadband hydrophone from 27 different nanocomposite sources. The effect of nonlinear propagation of high amplitude laser generated ultrasound on bandwidth and the effect of bandlimited sensitivity response on the deconvolved pressure waveform were numerically investigated. The stability of the nanocomposite sources under sustained laser pulse excitation was also examined.

10.
J Acoust Soc Am ; 143(1): 529, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390772

RESUMO

A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

11.
J Acoust Soc Am ; 141(3): 1726, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28372121

RESUMO

Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.


Assuntos
Simulação por Computador , Modelos Teóricos , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Humanos , Movimento (Física) , Análise Numérica Assistida por Computador , Pressão , Fatores de Tempo
12.
J Acoust Soc Am ; 139(4): 1637, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27106311

RESUMO

In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

13.
J Acoust Soc Am ; 136(4): 1499-510, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25324054

RESUMO

The absorption of compressional and shear waves in many viscoelastic solids has been experimentally shown to follow a frequency power law. It is now well established that this type of loss behavior can be modeled using fractional derivatives. However, previous fractional constitutive equations for viscoelastic media are based on temporal fractional derivatives. These operators are non-local in time, which makes them difficult to compute in a memory efficient manner. Here, a fractional Kelvin-Voigt model is derived based on the fractional Laplacian. This is obtained by splitting the particle velocity into compressional and shear components using a dyadic wavenumber tensor. This allows the temporal fractional derivatives in the Kelvin-Voigt model to be replaced with spatial fractional derivatives using a lossless dispersion relation with the appropriate compressional or shear wave speed. The model is discretized using the Fourier collocation spectral method, which allows the fractional operators to be efficiently computed. The field splitting also allows the use of a k-space corrected finite difference scheme for time integration to minimize numerical dispersion. The absorption and dispersion behavior of the fractional Laplacian model is analyzed for both high and low loss materials. The accuracy and utility of the model is then demonstrated through several numerical experiments, including the transmission of focused ultrasound waves through the skull.


Assuntos
Acústica , Modelos Teóricos , Som , Absorção Fisico-Química , Animais , Simulação por Computador , Elasticidade , Análise de Fourier , Humanos , Movimento (Física) , Análise Numérica Assistida por Computador , Crânio/diagnóstico por imagem , Fatores de Tempo , Ultrassom , Ultrassonografia , Viscosidade
14.
Ultrasound Med Biol ; 50(3): 317-331, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182491

RESUMO

New focused ultrasound spinal cord applications have emerged, particularly those improving therapeutic agent delivery to the spinal cord via blood-spinal cord barrier opening and the neuromodulation of spinal cord tracts. One hurdle in the development of these applications is safety. It may be possible to use safety trends from seminal and subsequent works in focused ultrasound to guide the development of safety guidelines for spinal cord applications. We collated data from decades of pre-clinical studies and illustrate a clear relationship between damage, time-averaged spatial peak intensity and exposure duration. This relationship suggests a thermal mechanism underlies ultrasound-induced spinal cord damage. We developed minimum and mean thresholds for damage from these pre-clinical studies. When these thresholds were plotted against the parameters used in recent pre-clinical ultrasonic spinal cord neuromodulation studies, the majority of the neuromodulation studies were near or above the minimum threshold. This suggests that a thermal neuromodulatory effect may exist for ultrasonic spinal cord neuromodulation, and that the thermal dose must be carefully controlled to avoid damage to the spinal cord. By contrast, the intensity-exposure duration threshold had no predictive value when applied to blood-spinal cord barrier opening studies that employed injected contrast agents. Most blood-spinal cord barrier opening studies observed slight to severe damage, except for small animal studies that employed an active feedback control method to limit pressures based on measured bubble oscillation behavior. The development of new focused ultrasound spinal cord applications perhaps reflects the recent success in the development of focused ultrasound brain applications, and recent work has begun on the translation of these technologies from brain to spinal cord. However, a great deal of work remains to be done, particularly with respect to developing and accepting safety standards for these applications.


Assuntos
Barreira Hematoencefálica , Terapia por Ultrassom , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo , Terapia por Ultrassom/métodos , Ultrassonografia , Medula Espinal
15.
Phys Med Biol ; 69(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788727

RESUMO

Objective. Focused ultrasound spinal cord neuromodulation has been demonstrated in small animals. However, most of the tested neuromodulatory exposures are similar in intensity and exposure duration to the reported small animal threshold for possible spinal cord damage. All efforts must be made to minimize the risk and assure the safety of potential human studies, while maximizing potential treatment efficacy. This requires an understanding of ultrasound propagation and heat deposition within the human spine.Approach. Combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level via two approaches (a) the posterior acoustic window between vertebral posterior arches, and (b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of fifty 0.1 s pulses (pulse repetition frequency: 0.33 Hz, free-field spatial peak pulse-averaged intensity: 10 W cm-2) were simulated for four subjects and for ±10 mm translational and ±10∘rotational source positioning errors.Main results.Target pressures ranged between 20%-70% of free-field spatial peak pressures with the posterior approach, and 20%-100% with the lateral approach. When the posterior source was optimally positioned, peak spine heating values were below 1 ∘C, but source mispositioning resulted in bone heating up to 4 ∘C. Heating with the lateral approach did not exceed 2 ∘C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range between subjects in the target pressure achieved per degree of maximum heating.Significance. This study highlights the utility of trans-spine ultrasound simulation software and need for precise source-anatomy positioning to assure the subject-specific safety and efficacy of focused ultrasound spinal cord therapies.


Assuntos
Terapia por Ultrassom , Humanos , Terapia por Ultrassom/efeitos adversos , Terapia por Ultrassom/métodos , Segurança , Medula Cervical/diagnóstico por imagem , Pressão , Estimulação da Medula Espinal/métodos , Estimulação da Medula Espinal/instrumentação , Modelos Biológicos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38530713

RESUMO

Existing data on the acoustic properties of low-temperature biological materials is limited and widely dispersed across fields. This makes it difficult to employ this information in the development of ultrasound applications in the medical field, such as cryosurgery and rewarming of cryopreserved tissues. In this review, the low-temperature acoustic properties of biological materials, and the measurement methods used to acquire them were collected from a range of scientific fields. The measurements were reviewed from the acoustic setup to thermal methodologies for samples preparation, temperature monitoring, and system insulation. The collected data contain the longitudinal and shear velocity, and attenuation coefficient of biological soft tissues and biologically relevant substances-water, aqueous solutions, and lipids-in the temperature range down to -50 °C and in the frequency range from 108 kHz to 25 MHz. The multiple reflection method (MRM) was found to be the preferred method for low-temperature samples, with a buffer rod inserted between the transducer and sample to avoid direct contact. Longitudinal velocity changes are observed through the phase transition zone, which is sharp in pure water, and occurs more slowly and at lower temperatures with added solutes. Lipids show longer transition zones with smaller sound velocity changes; with the longitudinal velocity changes observed during phase transition in tissues lying between these two extremes. More general conclusions on the shear velocity and attenuation coefficient at low-temperatures are restricted by the limited data. This review enhance knowledge guiding for further development of ultrasound applications in low-temperature biomedical fields, and may help to increase the precision and standardization of low-temperature acoustic property measurements.


Assuntos
Temperatura Baixa , Lipídeos , Água , Água/química , Lipídeos/química , Animais , Humanos , Acústica , Ultrassonografia/métodos
17.
Brain Stimul ; 17(3): 607-615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670224

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.


Assuntos
Consenso , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Terapia por Ultrassom/normas , Terapia por Ultrassom/métodos
18.
ArXiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410648

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.

19.
JASA Express Lett ; 3(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37166991

RESUMO

Transcranial ultrasound simulations are increasingly used to predict in situ exposure parameters for ultrasound therapies in the brain. However, there can be considerable uncertainty in estimating the acoustic medium properties of the skull and brain from computed tomography (CT) images. This paper shows how the resulting uncertainty in the simulated acoustic field can be predicted in a computationally efficient way using linear uncertainty propagation. Results for a representative transcranial simulation using a focused bowl transducer at 500 kHz show good agreement with unbiased uncertainty estimates obtained using Monte Carlo.


Assuntos
Encéfalo , Crânio , Incerteza , Ultrassonografia/métodos , Simulação por Computador , Encéfalo/diagnóstico por imagem , Crânio/diagnóstico por imagem
20.
JASA Express Lett ; 3(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125870

RESUMO

A new method for solving the wave equation is presented, called the learned Born series (LBS), which is derived from a convergent Born series but its components are found through training. The LBS is shown to be significantly more accurate than the convergent Born series for the same number of iterations, in the presence of high contrast scatterers, while maintaining a comparable computational complexity. The LBS is able to generate a reasonable prediction of the global pressure field with a small number of iterations, and the errors decrease with the number of learned iterations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA