Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(3): 1836-1845, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226655

RESUMO

A regioselective visible-light-mediated denitrogenative alkene insertion of 1,2,3-benzotriazin-4(3H)-ones was developed to access 3-substituted isoindolinones, an important structural motif present in many biologically active molecules and natural products. Notably, divergent reactivity was achieved by switching from reported nickel catalysis (where C3-substituted 3,4-dihydroisoquinolin-1(2H)-ones form) to photocatalysis, where photocatalytic denitrogenation and a subsequent nitrogen-mediated hydrogen atom shift lead to exclusive 3-substituted isoindolinone formation. The developed photocatalytic reaction is compatible with activated terminal alkenes and cyclic α,ß-unsaturated esters and ketones, with wide functional group tolerance for N-substitution of the 1,2,3-benzotriazin-4(3H)-ones. The utility of this procedure is highlighted by a gram-scale synthesis and postsynthetic amidation. To understand the origin of this unique product selectivity, experimental and computational mechanistic studies were performed.

2.
J Phys Chem A ; 128(2): 413-419, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38174881

RESUMO

In the gas-phase chemistry of the atmosphere and automotive fuel combustion, peroxyl radical intermediates are formed following O2 addition to carbon-centered radicals which then initiate a complex network of radical reactions that govern the oxidative processing of hydrocarbons. The rapid association of the phenyl radical-a fundamental radical related to benzene-with O2 has hitherto been modeled as a barrierless process, a common assumption for peroxyl radical formation. Here, we provide an alternate explanation for the kinetics of this reaction by deploying double-hybrid density functional theory (DFT), at the DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level of theory, and locate a submerged adiabatic transition state connected to a prereaction complex along the reaction entrance pathway. Using this potential energy scheme, experimental rate coefficients k(T) for the addition of O2 to the phenyl radical are accurately reproduced within a microcanonical kinetic model. This work highlights that purportedly barrierless radical oxidation reactions may instead be modeled using stationary points, which in turn provides insight into pressure and temperature dependence.

3.
J Am Chem Soc ; 145(28): 15024-15029, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37339086

RESUMO

Through a combination of ion-mobility filtering and laser-equipped quadrupole ion-trap mass spectrometry, the gas-phase reaction kinetics of two protonation isomers of the distonic-radical quinazoline cation are independently measured with ethylene. For these radical addition reactions, protonation site variations drive significant changes in nearby radical reactivity, and this is primarily due to through-space electrostatic effects. Furthermore, quantum chemical methods specifically designed for calculating long-range interactions, such as double-hybrid density functional theory, are required to rationalize the experimentally measured difference in reactivity.

4.
Anal Chem ; 95(42): 15472-15476, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830912

RESUMO

An experimental platform is reported that allows for the online characterization of photochemical reactions by coupling a continuous flow photoreactor, equipped with LED light irradiation and a dual-tipped ESI source, directly to a mass spectrometer with electrospray ionization. The capabilities of this platform are demonstrated with two classes of photoreactions: (1) the photopolymerization of methyl methacrylate and (2) photocatalyzed alkyne insertion into a 1,2,3-benzotriazinone. The online technique provides rapid information to inform the underlying photochemical mechanism and evaluate the overall photochemistry.

5.
Anal Chem ; 94(9): 3897-3903, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35201768

RESUMO

Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.


Assuntos
Ozônio , Ânions/química , Íons , Isomerismo , Espectrometria de Massas/métodos , Ozônio/química
6.
Anal Chem ; 94(50): 17494-17503, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473074

RESUMO

Here we report the development and optimization of a mass spectrometry imaging (MSI) platform that combines an atmospheric-pressure matrix-assisted laser desorption/ionization platform with plasma postionization (AP-MALDI-PPI) and trapped ion mobility spectrometry (TIMS). We discuss optimal parameters for operating the source, characterize the behavior of a variety of lipid classes in positive- and negative-ion modes, and explore the capabilities for lipid imaging using murine brain tissue. The instrument generates high signal-to-noise for numerous lipid species, with mass spectra sharing many similarities to those obtained using laser postionization (MALDI-2). The system is especially well suited for detecting lipids such as phosphatidylethanolamine (PE), as well as numerous sphingolipid classes and glycerolipids. For the first time, the coupling of plasma-based postionization with ion mobility is presented, and we show the value of ion mobility for the resolution and identification of species within rich spectra that contain numerous isobaric/isomeric signals that are not resolved in the m/z dimension alone, including isomeric PE and demethylated phosphatidylcholine lipids produced by in-source fragmentation. The reported instrument provides a powerful and user-friendly approach for MSI of lipids.


Assuntos
Diagnóstico por Imagem , Esfingolipídeos , Camundongos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo , Fosfatidilcolinas
7.
Faraday Discuss ; 238(0): 475-490, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822523

RESUMO

Gas phase ion-molecule reactions are central to chemical processes across many environments. A feature of many of these reactions is an inverse relationship between temperature and reaction rate arising from a submerged barrier (an early reaction barrier that is below the energy of the separated reactants), which often arises due to a stable pre-reactive complex. While the thermodynamics and kinetics of many ion-molecule reactions have been extensively modelled, the reaction kinetics of ion-molecule reactions involving radical ions are less explored. In this investigation, the target reactions involve distonic radical ions, where the charge and radical moieties are separated within the molecular structure. Experimental rate coefficients for the reaction of either C2H2 or C2H4 with a suite of eighteen distonic radical ions are reported. Rate coefficients are modelled using potential energy schemes combined with a statistical reaction-rate (RRKM-ME) model. Second-order rate coefficients are in good agreement with experimental values with an average RMS deviation of 37% across three orders of magnitude. These predictions are generally sensitive to the relative energetics of the pre-reactive complex forward transition state but are relatively insensitive to the overall exothermicity of the covalent-addition product.

8.
J Chem Phys ; 157(13): 134305, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209023

RESUMO

The first ππ* transition for protonated 2-, 3-, and 4-formylpyridine (FPH+) (m/z 108) is investigated by mass spectrometry coupled with photodissociation action spectroscopy at room temperature and 10 K. The photoproduct ions are detected over 35 000-43 000 cm-1, and the major product channel for 3-FPH+ and 4-FPH+ is the loss of CO forming protonated pyridine at m/z 80. For 2-FPH+, the CO loss product is present but a more abundant photoproduct arises from the loss of CH2O to form m/z 78. Plausible potential energy pathways that lead to dissociation are mapped out and comparisons are made to products arising from collision-induced dissociation. Although, in all cases, the elimination of CO is the overwhelming thermodynamically preferred pathway, the protonated 2-FPH+ results suggest that the CH2O product is kinetically driven and competitive with CO loss. In addition, for each isomer, radical photoproduct ions are detected at lower abundances. SCS-CC2/aug-cc-pVTZ Franck-Condon simulations assist with the assignment of vibrionic structure and adiabatic energies (0-0) for 2-FPH+ at 36 560 cm-1, 37 430 cm-1 for 3-FPH+, and 36 140 cm-1 for 4-FPH+, yielding an accurate prediction, on average, within 620 cm-1.


Assuntos
Piridinas , Íons/química , Espectrometria de Massas/métodos , Análise Espectral
9.
J Am Chem Soc ; 143(5): 2331-2339, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33427467

RESUMO

The low-lying electronic states of Irgacure 2959, a Norrish-type I photoinitiator, complexed with a single metal cation are investigated in the gas phase by photodissociation action spectroscopy. Analysis of the band shifts using quantum chemical calculations (TD-DFT and SCS-CC2) reveals the underlying influence of the charge on the key electronic energy levels. Since the cations (H+, Li+, Na+, K+, Zn2+, Ca2+, and Mg2+) bind at varying distances, the magnitude of the electric field at the center of the chromophore due to the cation is altered, and this shifts the electronic states by different amounts. Photodissociation action spectra of cation-Irg complexes show that absorption transitions to the first 1ππ* state are red-shifted with a magnitude proportional to the electric field strength (with red shifts >1 eV), and in most cases, the cation is essentially acting as a point charge. Calculations show that a neighboring 3nπ* state, a key state for the α-cleavage pathway, is destabilized (blue-shifted) by the orientated electric field. As such, if the 1ππ*-3nπ* energy gap is reduced, increased intersystem crossing rates are expected, resulting in higher yields of the desired radical photoproducts, and this is controlled by the orientated electric field arising from the cation.

10.
Anal Chem ; 93(22): 8091-8098, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019383

RESUMO

The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.


Assuntos
Iminas , Lasers , Reação de Cicloadição , Espectrometria de Massas , Análise Espectral
11.
Analyst ; 146(1): 156-169, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33125008

RESUMO

Ultraviolet-photodissociation (UVPD) mass spectrometry is an emerging analytical tool for structural elucidation of biomolecules including lipids. Gas phase UVPD of ionised fatty acids (FAs) can promote fragmentation that is diagnostic for molecular structure including the regiochemistry of carbon-carbon double bonds and methyl branching position(s). Typically, however, lipids exhibit poor conversion to photoproducts under UVPD and thus require longer integration times to achieve the signal-to-noise required for structural assignments. Consequently, the integration of UVPD into liquid-chromatography mass spectrometry (LC-MS) workflows for FAs has been limited. To enhance photofragmentation efficiency, an alternative strategy has been devised using wet-chemical derivatization of FAs to explicitly incorporate photolabile groups. FA derivatives that include an aryl-iodide motif have photodissociation conversions of up to 28% when activated by a single 266 nm photon. The radical-directed dissociation product ions resulting from UVPD of these derivatives provide key details of molecular structure and discriminate between lipid isomers. Herein, we describe the structure-activity guided development of new FA derivatives capable of photoproduct yields of up to 97%. UVPD-action spectroscopy demonstrates that photodissociation for FAs derivatized with N-(2-aminoethyl)-4-iodobenzamide (NIBA) is maximised near 266 nm and highlights the key role of the 4-iodobenzamide motif in the efficient formation of [M - I]˙+ radical cations (and diagnostic secondary product ions). The high photodissociation yield of NIBA-derivatized lipids is maintained across 37 commonly observed FAs with the resulting UVPD mass spectra shown to be effective in the discrimination of isomeric FAs that differ in the position(s) of carbon-carbon double bonds. Integration of this strategy with reversed-phase LC-MS workflows is confirmed with high-quality UVPD mass spectra acquired across each chromatographic peak.


Assuntos
Ácidos Graxos , Raios Ultravioleta , Cromatografia Líquida , Indicadores e Reagentes , Íons , Espectrometria de Massas
12.
Phys Chem Chem Phys ; 23(27): 14913-14924, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223848

RESUMO

Gas-phase reactions of the o-methylphenyl (o-CH3C6H4) radical with the C3H4 isomers allene (H2C[double bond, length as m-dash]C[double bond, length as m-dash]CH2) and propyne (HC[triple bond, length as m-dash]C-CH3) are studied at 600 K and 4 Torr (533 Pa) using VUV synchrotron photoionisation mass spectrometry, quantum chemical calculations and RRKM modelling. Two major dissociation product ions arise following C3H4 addition: m/z 116 (CH3 loss) and 130 (H loss). These products correspond to small polycyclic aromatic hydrocarbons (PAHs). The m/z 116 signal for both reactions is conclusively assigned to indene (C9H8) and is the dominant product for the propyne reaction. Signal at m/z 130 for the propyne case is attributed to isomers of bicyclic methylindene (C10H10) + H, which contains a newly-formed methylated five-membered ring. The m/z 130 signal for allene, however, is dominated by the 1,2-dihydronaphthalene isomer arising from a newly created six-membered ring. Our results show that new ring formation from C3H4 addition to the methylphenyl radical requires an ortho-CH3 group - similar to o-methylphenyl radical oxidation. These reactions characteristically lead to bicyclic aromatic products, but the structure of the C3H4 co-reactant dictates the structure of the PAH product, with allene preferentially leading to the formation of two six-membered ring bicyclics and propyne resulting in the formation of six and five-membered bicyclic structures.

13.
J Chem Phys ; 155(18): 184302, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773941

RESUMO

Certain chemical groups give rise to characteristic excited-state deactivation mechanisms. Here, we target the role of a protonated N-N chemical group in the excited-state deactivation of protonated indazole by comparison to its isomer that lacks this group, protonated benzimidazole. Gas-phase protonated indazole and protonated benzimidazole ions are investigated at room temperature using picosecond laser pump-probe photodissociation experiments in a linear ion-trap. Excited state lifetimes are measured across a range of pump energies (4.0-5.4 eV). The 1ππ* lifetimes of protonated indazole range from 390 ± 70 ps using 4.0 eV pump energy to ≤18 ps using 4.6 eV pump energy. The 1ππ* lifetimes of protonated benzimidazole are systematically longer, ranging from 3700 ± 1100 ps at 4.6 eV pump energy to 400 ± 200 ps at 5.4 eV. Based on these experimental results and accompanying quantum chemical calculations and potential energy surfaces, the shorter lifetimes of protonated indazole are attributed to πσ* state mediated elongation of the protonated N-N bond.

14.
Rapid Commun Mass Spectrom ; 34(9): e8741, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32012356

RESUMO

RATIONALE: Eicosanoids are short-lived bio-responsive lipids produced locally from oxidation of polyunsaturated fatty acids (FAs) via a cascade of enzymatic or free radical reactions. Alterations in the composition and concentration of eicosanoids are indicative of inflammation responses and there is strong interest in developing analytical methods for the sensitive and selective detection of these lipids in biological mixtures. Most eicosanoids are hydroxy FAs (HFAs), which present a particular analytical challenge due to the presence of regioisomers arising from differing locations of hydroxylation and unsaturation within their structures. METHODS: In this study, the recently developed derivatization reagent 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+ ) was applied to a representative set of HFAs including bioactive eicosanoids. Photodissociation (PD) mass spectra obtained at 266 nm of 4-I-AMPP+ -modified HFAs exhibit abundant product ions arising from photolysis of the aryl-iodide bond within the derivative with subsequent migration of the radical to the hydroxyl group promoting fragmentation of the FA chain and facilitating structural assignment. RESULTS: Representative polyunsaturated HFAs (from the hydroxyeicosatetraenoic acid and hydroxyeicosapentaenoic acid families) were derivatized with 4-I-AMPP+ and subjected to a reversed-phase liquid chromatography workflow that afforded chromatographic resolution of isomers in conjunction with structurally diagnostic PD mass spectra. CONCLUSIONS: PD of these complex HFAs was found to be sensitive to the locations of hydroxyl groups and carbon-carbon double bonds, which are structural properties strongly associated with the biosynthetic origins of these lipid mediators.

15.
Phys Chem Chem Phys ; 22(4): 2130-2141, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912066

RESUMO

In free radicals the singly occupied molecular orbital (SOMO) typically has the highest energy. Recent examples of distonic radical anions were found, however, to disobey the usual orbital configuration, with the singly occupied molecular orbital buried energetically underneath doubly occupied orbitals. This unusual ordering of electrons, which contradicts the aufbau principle, has been characterized as SOMO-HOMO orbital conversion and is expected to perturb radical anion reactivity by branching toward anion-driven over radical-driven processes. Here, we use ion trap mass spectrometry and ab initio calculations to demonstrate that SOMO-HOMO orbital conversion influences the reactivity of a distonic peroxyl radical anion. Experimentally, we generated a distonic radical anion of ß-hydroxy glutaric acid, ˙CH2CH(OH)CH2C(O)O-, and investigated its subsequent reaction with O2 in the gas phase. Theoretical calculations predict that reactions proceed through five isomeric C4H6O5˙- intermediates, two of which exhibit SOMO-HOMO conversion. The detected product ions, corresponding to loss of ˙OH + CO2, ˙OH + HCHO, HO2˙, and HO2˙ + CO2 from the peroxyl radical, can all be reconciled by the proposed reaction mechanism. Finally, we compare the oxygen recombination reaction of the distonic radical ion to the corresponding neutral radical (i.e., ˙CH2CH(OH)CH2C(O)OH). These calculations demonstrate that SOMO-HOMO conversion results in channel switching in the distonic radical anion, suppressing radical-driven mechanisms and promoting pathways that directly involve the anion site.

16.
Phys Chem Chem Phys ; 22(18): 9982-9989, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32363365

RESUMO

Despite the impacts - both positive and negative - of atmospheric ozone for life on Earth, there remain significant gaps in our knowledge of the products, mechanisms and rates of some of its most fundamental gas phase reactions. This incomplete understanding is largely due to the experimental challenges involved in the study of gas-phase reactions of ozone and, in particular, the identification of short-lived reaction intermediates. Here we report direct observation of the stepwise reaction of the halide anions iodide (I-) and bromide (Br-) with ozone to produce XO3- (where X = I and Br, respectively). These results substantially revise the rate constant for the I- + O3 reaction to 1.1 (± 0.5) × 10-12 cm3 molecule-1 s-1 (0.13% efficiency) and the Br- + O3 reaction to 6.2 (± 0.4) × 10-15 cm3 molecule-1 s-1 (0.001% efficiency). Exploiting five-orders of temporal dynamic range on a linear ion trap mass spectrometer enabled explicit measurement of the rate constants for the highly efficient intermediate, XO- + O3 and XO2- + O3, reactions thus confirming a stepwise addition of three oxygen atoms (i.e., X- + 3O3 → XO3- + 3O2) with the first addition representing the rate determining step. Evidence is also presented for (i) slow reverse reactions of XO- and XO2-, but not XO3-, with molecular oxygen and (ii) the photodissociation of IO-, IO2- and IO3- to release I-. Collectively, these results suggest relatively short lifetimes for Br- and I- in the tropospere with direct gas-phase oxidation by ozone playing a role in both the formation of atmospheric halogen oxides and, conversely, in the ozone depletion associated with springtime polar bromine explosion events.

17.
Anal Chem ; 91(15): 9901-9909, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298837

RESUMO

Fatty acids are a structurally diverse category of lipids with a myriad of biochemical functions, which includes their role as building blocks of more complex lipids (e.g., glycerophospholipids and triacylglycerols). Increasingly, the analysis of fatty acids is undertaken using liquid chromatography-mass spectrometry (LC-MS), due to its versatility in the detection of lipids across a wide range of concentrations and diversity of molecular structures and masses. Previous work has shown that fixed-charge pyridinium derivatives are effective in enhancing the detection of fatty acids in LC-MS workflows. Herein, we describe the development of two novel pyridinium fixed-charged derivatization reagents that incorporate a photolabile aryl iodide that is selectively activated by laser irradiation inside the mass spectrometer. Photodissociation mass spectra of fatty acids conjugated to 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+) and 1-(4-(aminomethyl)-3-iodophenyl)pyridin-1-ium (3-I-AMPP+) derivatives reveal structurally diagnostic product ions. These spectra feature radical-directed dissociation of the carbon-carbon bonds within the fatty acyl chain, enabling structural assignments of fatty acids and discrimination of isomers that differ in site(s) of unsaturation, methyl branching or cyclopropanation. These derivatives are shown to be suitable for hyphenated LC-MS methods, and their predictable photodissociation behavior allows de novo identification of unusual fatty acids within a biological context.


Assuntos
Ácidos Graxos/química , Processos Fotoquímicos , Cromatografia Líquida , Iodo/química , Espectrometria de Massas , Compostos de Piridínio/química
18.
Anal Chem ; 91(16): 10840-10848, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31355633

RESUMO

Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.


Assuntos
Lasers , Preparações Farmacêuticas/análise , Pesquisa Farmacêutica , Animais , Cartilagem/química , Cães , Humanos , Fígado/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Faraday Discuss ; 217(0): 453-475, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31012453

RESUMO

The detection and assignment of protonation isomers, termed protomers, of gas-phase ions remains a challenge in mass spectrometry. With the emergence of ion-mobility techniques combined with tuneable-laser photodissociation spectroscopy, new experimental combinations are possible to now meet this challenge. In this paper, the differences in fragmentation and electronic spectroscopy of singly protonated (S)-nicotine (nicH+) ions are analysed using action spectroscopy in the ultraviolet region and field asymmetric ion mobility spectrometry (FAIMS). Experiments are supported by quantum chemical calculations (DFT, TD-DFT and CC2) of both spectroscopic and thermochemical properties. Electrospray ionisation (ESI) of (S)-nicotine from different solvents leads to different populations of two nicH+ protomers corresponding to protonation on the pyridine nitrogen and pyrrolidine nitrogen, respectively. FAIMS gives partial resolution of these protomers and enables characteristic product ions to be identified for each isomer as verified directly by analysis of product-ion specific action spectroscopy. It is shown that while characteristic, these product ions are not exclusive to each protomer. Calculations of vertical electronic transitions assist in rationalising the photodissociation action spectra. The integration of photodissociation action spectroscopy with FAIMS-mass spectrometry is anticipated to be a useful approach for separating and assigning protonation isomers of many other small molecular ions.

20.
Phys Chem Chem Phys ; 21(32): 17939-17949, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31384867

RESUMO

Product detection studies of the gas-phase oxidation of o-methylphenyl radicals and m-methylphenyl radicals are reported at ambient temperature (ca. 298 K) and 4 Torr (533.3 Pa) using VUV synchrotron photoionisation mass spectrometry. It is shown that cyclopentadienone (c-C5H4[double bond, length as m-dash]O) + CH3CO and o-quinone methide (o-CH2[double bond, length as m-dash]C6H4[double bond, length as m-dash]O) + OH are unique product pathways to the o-methylphenyl + O2 reaction due to mechanisms requiring the CH3 group to be adjacent to the phenyl radical site. Common product pathways include methylphenoxy radical + O(3P) and isomers of methylcyclopentadienone (CH3C5H4[double bond, length as m-dash]O) + HCO. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-methylphenyl and m-methylphenyl radical oxidation. The o-quinone methide formation mechanism from o-methylphenyl + O2 is analogous to the formation of o-benzoquinone from o-hydroxyphenyl + O2 where, after O2 addition, the ortho-substituent in the phenylperoxyl intermediate undergoes a 1,5-H shift and eliminates OH. Other reaction products, including methylcyclopentadienone species and methylphenyoxy radicals, are rationalised by applying known phenyl oxidation mechanisms. Transition state bifurcations are present in both radical systems and have exclusive end products (with different molecular mass). Compared to previous o-hydroxyphenyl and charged-tagged methylphenyl radical oxidation studies, there are significantly more products owing to the activation in this radical system and the competitiveness of rate limiting pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA