Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 3(4): e59, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17447836

RESUMO

It has been a long-standing goal in systems biology to find relations between the topological properties and functional features of protein networks. However, most of the focus in network studies has been on highly connected proteins ("hubs"). As a complementary notion, it is possible to define bottlenecks as proteins with a high betweenness centrality (i.e., network nodes that have many "shortest paths" going through them, analogous to major bridges and tunnels on a highway map). Bottlenecks are, in fact, key connector proteins with surprising functional and dynamic properties. In particular, they are more likely to be essential proteins. In fact, in regulatory and other directed networks, betweenness (i.e., "bottleneck-ness") is a much more significant indicator of essentiality than degree (i.e., "hub-ness"). Furthermore, bottlenecks correspond to the dynamic components of the interaction network-they are significantly less well coexpressed with their neighbors than non-bottlenecks, implying that expression dynamics is wired into the network topology.


Assuntos
Algoritmos , Regulação da Expressão Gênica/fisiologia , Expressão Gênica/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Simulação por Computador , Estatística como Assunto
2.
Genome Biol ; 7(7): R55, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16859507

RESUMO

BACKGROUND: Molecular networks are of current interest, particularly with the publication of many large-scale datasets. Previous analyses have focused on topologic structures of individual networks. RESULTS: Here, we present a global comparison of four basic molecular networks: regulatory, co-expression, interaction, and metabolic. In terms of overall topologic correlation--whether nearby proteins in one network are close in another--we find that the four are quite similar. However, focusing on the occurrence of local features, we introduce the concept of composite hubs, namely hubs shared by more than one network. We find that the three 'action' networks (metabolic, co-expression, and interaction) share the same scaffolding of hubs, whereas the regulatory network uses distinctly different regulator hubs. Finally, we examine the inter-relationship between the regulatory network and the three action networks, focusing on three composite motifs--triangles, trusses, and bridges--involving different degrees of regulation of gene pairs. Our analysis shows that interaction and co-expression networks have short-range relationships, with directly interacting and co-expressed proteins sharing regulators. However, the metabolic network contains many long-distance relationships: far-away enzymes in a pathway often have time-delayed expression relationships, which are well coordinated by bridges connecting their regulators. CONCLUSION: We demonstrate how basic molecular networks are distinct yet connected and well coordinated. Many of our conclusions can be mapped onto structured social networks, providing intuitive comparisons. In particular, the long-distance regulation in metabolic networks agrees with its counterpart in social networks (namely, assembly lines). Conversely, the segregation of regulator hubs from other hubs diverges from social intuitions (as managers often are centers of interactions).


Assuntos
Conformação Proteica , Proteínas/química , Motivos de Aminoácidos
3.
Bioinformatics ; 22(7): 823-9, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16455753

RESUMO

UNLABELLED: Datasets obtained by large-scale, high-throughput methods for detecting protein-protein interactions typically suffer from a relatively high level of noise. We describe a novel method for improving the quality of these datasets by predicting missed protein-protein interactions, using only the topology of the protein interaction network observed by the large-scale experiment. The central idea of the method is to search the protein interaction network for defective cliques (nearly complete complexes of pairwise interacting proteins), and predict the interactions that complete them. We formulate an algorithm for applying this method to large-scale networks, and show that in practice it is efficient and has good predictive performance. More information can be found on our website http://topnet.gersteinlab.org/clique/ CONTACT: Mark.Gerstein@yale.edu SUPPLEMENTARY INFORMATION: Supplementary Materials are available at Bioinformatics online.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/métodos , Simulação por Computador , Bases de Dados de Proteínas , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Genome Res ; 16(2): 271-81, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16365382

RESUMO

A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Genoma Humano , Sequências Repetitivas Dispersas , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genoma Humano/genética , Humanos , Sequências Repetitivas Dispersas/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Opt Soc Am A Opt Image Sci Vis ; 21(1): 59-70, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14725398

RESUMO

A scattering-media-characterization method that uses partially coherent radiation and polarization discrimination of multiply scattered light is described. The method is based on an analysis of the dependence of speckle contrast on the coherence length of the probe light. Polarization discrimination of detected speckles makes it possible to select scattered-light components that propagate in the probed medium at different distances. A theoretical analysis of the polarization-dependent speckle contrast as influenced by the probe-light coherence and parameters of the probed medium is presented. Experimental results obtained with various nondiffuse scattering samples are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA