Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(3): 392-406.e5, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402190

RESUMO

BACKGROUND & AIMS: Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored. METHODS: Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines. RESULTS: The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ-resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling. CONCLUSIONS: Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC.


Assuntos
Colite , Neoplasias Colorretais , Humanos , Camundongos , Animais , Glicosilação , Neoplasias Colorretais/patologia , Interferon gama , Imunoterapia , Colite/patologia , Tretinoína
2.
BMC Cancer ; 24(1): 346, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500100

RESUMO

BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.


Assuntos
Luciferases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Células HEK293 , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética
3.
J Pathol ; 256(4): 455-467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34939675

RESUMO

Neutrophil extracellular traps (NETs) are extracellular structures, composed of nuclear DNA and various proteins released from neutrophils. Evidence is growing that NETs exert manifold functions in infection, immunity and cancer. Recently, NETs have been detected in colorectal cancer (CRC) tissues, but their association with disease progression and putative functional impact on tumourigenesis remained elusive. Using high-resolution stimulated emission depletion (STED) microscopy, we showed that citrullinated histone H3 (H3cit) is sufficient to specifically detect citrullinated NETs in colon cancer tissues. Among other evidence, this was supported by the close association of H3cit with de-condensed extracellular DNA, the hallmark of NETs. Extracellular DNA was reliably differentiated from nuclear condensed DNA by staining with an anti-DNA antibody, providing a novel and valuable tool to detect NETs in formalin-fixed paraffin-embedded tissues. Using these markers, the clinical association of NETs was investigated in a cohort of 85 patients with colon cancer. NETs were frequently detected (37/85, 44%) in colon cancer tissue sections and preferentially localised either only in the tumour centre or both in the tumour centre and the invasive front. Of note, citrullinated NETs were significantly associated with high histopathological tumour grades and lymph node metastasis. In vitro, purified NETs induced filopodia formation and cell motility in CRC cell lines. This was associated with increased expression of mesenchymal marker mRNAs (vimentin [VIM], fibronectin [FN1]) and epithelial-mesenchymal transition promoting transcription factors (ZEB1, Slug [SNAI2]), as well as decreased expression of the epithelial markers E-cadherin (CDH1) and epithelial cell adhesion molecule (EPCAM). These findings indicated that NETs activate an epithelial-mesenchymal transition-like process in CRC cells and may contribute to the metastatic progression of CRC. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Armadilhas Extracelulares , Biomarcadores/metabolismo , Neoplasias do Colo/metabolismo , DNA , Transição Epitelial-Mesenquimal , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos
4.
Am J Transplant ; 22(2): 438-454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34467638

RESUMO

Immune responses reflect a complex interplay of cellular and extracellular components which define the microenvironment of a tissue. Therefore, factors that locally influence the microenvironment and re-establish tolerance might be beneficial to mitigate immune-mediated reactions, including the rejection of a transplant. In this study, we demonstrate that pre-incubation of donor tissue with the immune modulator soluble CD83 (sCD83) significantly improves graft survival using a high-risk corneal transplantation model. The induction of tolerogenic mechanisms in graft recipients was achieved by a significant upregulation of Tgfb, Foxp3, Il27, and Il10 in the transplant and an increase of regulatory dendritic cells (DCs), macrophages (Mφ), and T cells (Tregs) in eye-draining lymph nodes. The presence of sCD83 during in vitro DC and Mφ generation directed these cells toward a tolerogenic phenotype leading to reduced proliferation-stimulating activity in MLRs. Mechanistically, sCD83 induced a tolerogenic Mφ and DC phenotype, which favors Treg induction and significantly increased transplant survival after adoptive cell transfer. Conclusively, pre-incubation of corneal grafts with sCD83 significantly prolongs graft survival by modulating recipient Mφ and DCs toward tolerance and thereby establishing a tolerogenic microenvironment. This functional strategy of donor graft pre-treatment paves the way for new therapeutic options in the field of transplantation.


Assuntos
Células Dendríticas , Sobrevivência de Enxerto , Tolerância Imunológica , Macrófagos , Linfócitos T Reguladores
5.
Bioinformatics ; 37(24): 4901-4902, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34152405

RESUMO

SUMMARY: Creating 3D animations from microscopy data is computationally expensive and requires high-end hardware. We therefore developed 3Dscript.server, a 3D animation software that runs as a service on dedicated, shared workstations. Using 3Dscript as the underlying rendering engine, it offers unique features not found in existing software: rendering is performed completely server-side. The target animation is specified on the client without the rendering engine, eliminating any hardware requirements client-side. Still, defining an animation is intuitive due to 3Dscript's natural language-based animation description. We implemented a new OMERO web app to utilize 3Dscript.server directly from the OMERO web interface; a Fiji client to use 3Dscript.server from Fiji for integration into image processing pipelines; and batch scripts to run 3Dscript.server on compute clusters for large-scale visualization projects. AVAILABILITY AND IMPLEMENTATION: Source code and documentation is available at https://github.com/bene51/omero_3Dscript, https://github.com/bene51/3Dscript.server and https://github.com/bene51/3Dscript.cluster. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Computadores , Microscopia , Humanos , Software , Idioma , Processamento de Imagem Assistida por Computador
6.
Bioorg Med Chem ; 44: 116303, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280850

RESUMO

Recently, FRET probes for acid sphingomyelinase (ASM) have enabled the observation of enzyme activity in intact cells for the first time. Here we present an ASM FRET probe specifically optimized for 2-photon excitation. To facilitate probe characterization and comparison to the previous probe, we mixed the two intact probes with defined amounts of the probes' ceramide cleavage products and mounted them on lipid beads. Directly excited NBD FRET acceptor fluorescene proved to be a useful means of reference and showed that the new probe is brighter, albeit only moderately, than the previous one. The new probe was then used to detect inhibition by various ASM inhibitors microscopically for the first time. Also in cells, directly excited acceptor fluorescence proved to be a useful parameter in addition to FRET to visualize inhibition of ASM.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Fótons , Esfingomielina Fosfodiesterase/análise , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Esfingomielina Fosfodiesterase/metabolismo , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067987

RESUMO

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


Assuntos
Antígenos CD/metabolismo , Movimento Celular , Processamento de Imagem Assistida por Computador/métodos , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Organoides/metabolismo , Linfócitos T/fisiologia , Animais , Técnicas de Cocultura , Imunofluorescência , Mucosa Intestinal/citologia , Linfócitos Intraepiteliais/citologia , Camundongos , Organoides/citologia , Análise Espaço-Temporal
8.
J Immunol ; 199(5): 1672-1681, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739875

RESUMO

Human monocytic myeloid-derived suppressor cells (MO-MDSCs) within the hepatic compartment suppress inflammation and impair immune surveillance in liver cancer. It is currently not known whether recruitment of MO-MDSCs from blood via hepatic sinusoidal endothelium (HSEC) contributes to their enrichment within the hepatic compartment. We compared the transmigratory potential of MO-MDSCs and monocytes after adhesion to hepatic endothelial monolayers in flow-based assays that mimic in vivo shear stress in the sinusoids. Despite comparable binding to HSEC monolayers, proportionally fewer MO-MDSCs underwent transendothelial migration, indicating that the final steps of extravasation, where actin polymerization plays an important role, are impaired in MO-MDSCs. In this article, we found reduced levels of CD13 on MO-MDSCs, which has recently been reported to control cell motility in monocytes, alongside reduced VLA-4 expression, an integrin predominantly involved in adherence to the apical side of the endothelium. CD13 and VLA-4 blocking and activating Abs were used in flow-based adhesion assays, live-cell imaging of motility, and actin polymerization studies to confirm a role for CD13 in impaired MO-MDSC transmigration. These findings indicate that CD13 significantly contributes to tissue infiltration by MO-MDSCs and monocytes, thereby contributing to the pathogenesis of hepatic inflammation.


Assuntos
Antígenos CD13/metabolismo , Endotélio Corneano/fisiologia , Hemocromatose/imunologia , Hepatite/imunologia , Fígado/imunologia , Células Supressoras Mieloides/imunologia , Migração Transendotelial e Transepitelial , Actinas/metabolismo , Anticorpos Bloqueadores/farmacologia , Antígenos CD13/genética , Antígenos CD13/imunologia , Adesão Celular , Movimento Celular , Células Cultivadas , Regulação para Baixo , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/imunologia , Integrina alfa4beta1/metabolismo
9.
J Neural Transm (Vienna) ; 125(12): 1837-1845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191367

RESUMO

In recent studies, major depressive disorder (MDD) was linked to an increase in acid sphingomyelinase (ASM) activity. Several drugs that are commonly used to treat MDD functionally inhibit the lysosomal enzyme ASM and are called functional inhibitors of ASM (FIASMAs). These drugs are classified as cationic amphiphilic drugs (CADs) that influence the catalytic activities of different lysosomal enzymes. This action results in the side effect of phospholipidosis (PLD), which describes a detrimental increase in the phospholipid content in lysosomes. FIASMAs differ only slightly in their physico-chemical properties, but their effects on ASM activity and induction of the lysosomal phospholipid content vary significantly. In this study, we systematically induced minor chemical modifications to the FIASMAs imipramine, desipramine and fluoxetine. We generated a library of 45 new CADs with slightly different log P (logarithmic partition coefficient) and pKa (logarithmic acid dissociation constant) values. The effects of the compounds on the ASM activity and lysosomal phospholipid content were assessed in cell culture assays. We identified four compounds with beneficial effects, i.e., increased ASM activity inhibition and reduced PLD induction compared with the original drugs. The compounds HT04, RH272B and RH272D outperformed the original imipramine, whereas RH281A performed better than desipramine. Thus, minor chemical variations of CADs impact lysosomal metabolism in a specific manner and can lead to antidepressant drugs with less deleterious side effects.


Assuntos
Desipramina/farmacologia , Fluoxetina/farmacologia , Imipramina/farmacologia , Lisossomos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Antidepressivos/farmacologia , Linhagem Celular Tumoral , Humanos , Lisossomos/metabolismo
10.
Angew Chem Int Ed Engl ; 57(37): 11943-11946, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30035345

RESUMO

Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro-DLCs is proposed based on an N-alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium-based DLCs. Since ROS are overproduced in cancer, the high-efficiency cancer-cell-specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro-DLCs in vitro and in vivo. We prepared a conjugate of another pro-DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.


Assuntos
Compostos Ferrosos/química , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Rodamina 123/química
11.
J Cell Mol Med ; 21(9): 1954-1966, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28272793

RESUMO

Human guanylate binding protein-1 (GBP-1) belongs to the family of large GTPases. The expression of GBP-1 is inducible by inflammatory cytokines, and the protein is involved in inflammatory processes and host defence against cellular pathogens. GBP-1 is the first GTPase which was described to be secreted by eukaryotic cells. Here, we report that precipitation of GBP-1 with GMP-agarose from cell culture supernatants co-purified a 47-kD fragment of GBP-1 (p47-GBP-1) in addition to the 67-kD full-length form. MALDI-TOF sequencing revealed that p47-GBP-1 corresponds to the C-terminal helical part of GBP-1 and lacks most of the globular GTPase domain. In silico analyses of protease target sites, together with cleavage experiments in vitro and in vivo, showed that p67-GBP-1 is cleaved by the inflammatory caspases 1 and 5, leading to the formation of p47-GBP-1. Furthermore, the secretion of p47-GBP-1 was found to occur via a non-classical secretion pathway and to be dependent on caspase-1 activity but independent of inflammasome activation. Finally, we showed that p47-GBP-1 represents the predominant form of secreted GBP-1, both in cell culture supernatants and, in vivo, in the cerebrospinal fluid of patients with bacterial meningitis, indicating that it may represent the biologically active form of extracellular GBP-1. These findings confirm the involvement of caspase-1 in non-classical secretion mechanisms and open novel perspectives for the extracellular function of secreted GBP-1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Caspase 1/metabolismo , Feminino , Proteínas de Ligação ao GTP/líquido cefalorraquidiano , Proteínas de Ligação ao GTP/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/metabolismo , Interferon gama/farmacologia , Masculino , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/metabolismo , Pessoa de Meia-Idade , Peso Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Adulto Jovem
13.
Bioorg Med Chem ; 23(14): 4026-33, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691211

RESUMO

The neurotensin receptor 2 (NTS2) is an attractive target for cancer imaging, as it is overexpressed in a variety of tumor types including prostate, pancreas and breast carcinoma. The aim of this study was the development of the first NTS2 subtype selective (18)F-labeled radioligand for imaging NTS2 expression in vivo by positron emission tomography (PET). The radiosynthesis of glycopeptoid (18)F-4 was realized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), applying the prosthetic group 6-deoxy-6-[(18)F]fluoroglucosyl azide for (18)F-fluoroglycosylation of the alkyne-terminated NT(8-13) analog Pra-N-Me-Arg-Arg-Pro-N-homo-Tyr-Ile-Leu-OH. The binding affinity of the peptide-peptoid 4 for NTS2 was 7nM with excellent subtype selectivity over NTS1 (260-fold). In vitro autoradiography studies of rat brain slices confirmed the high selectivity of (18)F-4 for NTS2. Biodistribution experiments using HT29 and PC3 tumor-bearing nude mice revealed high renal and only moderate tumor uptake, while PET imaging experiments revealed specific binding of (18)F-4 in NTS2-positive tumors. As (18)F-4 displayed high stability in vitro but fast degradation in vivo, future work will focus on the development of metabolically more stable NT(8-13) analogs.


Assuntos
Peptoides/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Neurotensina/análise , Animais , Autorradiografia , Técnicas de Química Sintética , Estabilidade de Medicamentos , Feminino , Radioisótopos de Flúor , Glicopeptídeos/química , Células HT29 , Humanos , Marcação por Isótopo , Camundongos Nus , Compostos Radiofarmacêuticos/metabolismo , Receptores de Neurotensina/metabolismo , Distribuição Tecidual
14.
Handb Exp Pharmacol ; (215): 169-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23579455

RESUMO

Sphingolipids are not only structural components of biological membranes, but also play an important role in cellular signalling and, thus, are involved in cell proliferation and differentiation but also stress and cell death. It is therefore of great clinical relevance to define inhibitors of the enzymes involved in sphingolipid metabolism. Here, we describe the state of the art of functional inhibitors of the acid sphingomyelinase. The acid sphingomyelinase converts sphingomyelin to ceramide, a compound often involved in cell stress. We describe the structural and physicochemical properties, the distribution, the pharmacokinetics, the pharmocodynamics and the clinical use of direct and functional inhibitors of the acid sphingomyelinase.


Assuntos
Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Barreira Hematoencefálica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos
15.
Sci Rep ; 13(1): 19660, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952029

RESUMO

Functional and structural alterations of peritubular capillaries (PTCs) are a major determinant of chronic kidney disease (CKD). Using a software-based algorithm for semiautomatic segmentation and morphometric quantification, this study analyzes alterations of PTC shape associated with chronic tubulointerstitial injury in three mouse models and in human biopsies. In normal kidney tissue PTC shape was predominantly elongated, whereas the majority of PTCs associated with chronic tubulointerstitial injury had a rounder shape. This was reflected by significantly reduced PTC luminal area, perimeter and diameters as well as by significantly increased circularity and roundness. These morphological alterations were consistent in all mouse models and human kidney biopsies. The mean circularity of PTCs correlated significantly with categorized glomerular filtration rates and the degree of interstitial fibrosis and tubular atrophy (IFTA) and classified the presence of CKD or IFTA. 3D reconstruction of renal capillaries revealed not only a significant reduction, but more importantly a substantial simplification and reconfiguration of the renal microvasculature in mice with chronic tubulointerstitial injury. Computational modelling predicted that round PTCs can deliver oxygen more homogeneously to the surrounding tissue. Our findings indicate that alterations of PTC shape represent a common and uniform reaction to chronic tubulointerstitial injury independent of the underlying kidney disease.


Assuntos
Transplante de Rim , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Túbulos Renais/patologia , Capilares/patologia , Rim/patologia , Insuficiência Renal Crônica/patologia , Fibrose
16.
Front Immunol ; 13: 958974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148242

RESUMO

Osteoclasts are polykaryons formed by cell-cell fusion of highly motile progenitors of the myeloid lineage. Osteoclast activity can preserve skeletal strength and bone homeostasis. However, osteoclasts are responsible for bone destruction in rheumatoid arthritis (RA). Fc receptors activated by IgG immune complexes (IC) can boost osteoclast differentiation and bone loss in the course of RA. In contrast, interferon (IFN) γ secreted by immune cells blocks osteoclast activation. Despite their hypothetical importance in the regulation of osteoclast differentiation in RA, the interconnection between the two pathways has not been described so far. Here, we show by total internal reflection fluorescence (TIRF) microscopy that FcγR3 and IFNγ receptor (IFNγR) locate at close vicinity to each other on the human osteoclast surface. Moreover, the average distance increases during the differentiation process. Interestingly, FcγR and IFNγR activation shapes the position of both receptors to each other. Surprisingly, the inhibitory action of IFNγ on in-vitro human osteoclast differentiation depends on the osteoclast differentiation stage. Indeed, IFNγR activation in early osteoclast precursors completely inhibits the formation of polynucleated osteoclasts, while in premature osteoclasts, it further enhanced their fusion. In addition, gene expression analyses showed that IFNγR activation on early precursor cells but not on premature osteoclasts could induce FcγR expression, suggesting a co-regulation of both receptors on human osteoclast precursors. Phosphokinase array data of precursor cells demonstrate that the observed divergence of IFNγR signaling is dependent on the mitogen-activated protein kinase (MAPK) downstream signaling pathway. Overall, our data indicate that FcγR and IFNγR signaling pathways co-influence the differentiation and activity of osteoclasts dependent on the differentiation state, which might reflect the different stages in RA.


Assuntos
Artrite Reumatoide , Osteoclastos , Complexo Antígeno-Anticorpo/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Imunoglobulina G/metabolismo , Interferons/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoclastos/metabolismo , Receptores de IgG/metabolismo
17.
Acta Biomater ; 142: 208-220, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167953

RESUMO

In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. STATEMENT OF SIGNIFICANCE: In this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Alginatos/farmacologia , Antineoplásicos/farmacologia , Cápsulas , Movimento Celular , Cisplatino/farmacologia , Resistência a Medicamentos , Células Endoteliais , Feminino , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Hipóxia , Reprodutibilidade dos Testes
18.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806549

RESUMO

(1) Background: Despite progress in surgery and radio-chemotherapy of glioblastoma (GB), the prognosis remains very poor. GB cells exhibit a preference for hypoxia to maintain their tumor-forming capacity. Enhancing oxidative phosphorylation-known as the anti-Warburg effect-with cyclic AMP activators has been demonstrated to drive GB cells from proliferation to differentiation thereby reducing tumor growth in a cell culture approach. Here we re-evaluate this treatment in a more clinically relevant model. (2) Methods: The effect of treatment with dibutyryl cyclic AMP (dbcAMP, 1 mM) and the cAMP activator forskolin (50µM) was assessed in a GB cell line (U87GFP+, 104 cells) co-cultured with mouse organotypic brain slices providing architecture and biochemical properties of normal brain tissue. Cell viability was determined by propidium-iodide, and gross metabolic effects were excluded in the extracellular medium. Tumor growth was quantified in terms of area, volume, and invasion at the start of culture, 48 h, 7 days, and 14 days after treatment. (3) Results: The tumor area was significantly reduced following dbcAMP or forskolin treatment (F2,249 = 5.968, p = 0.0029). 3D volumetric quantification utilizing two-photon fluorescence microscopy revealed that the treated tumors maintained a spheric shape while the untreated controls exhibited the GB typical invasive growth pattern. (4) Conclusions: Our data demonstrate that treatment with a cAMP analog/activator reduces GB growth and invasion.


Assuntos
AMP Cíclico/metabolismo , Glioblastoma/genética , Microscopia/métodos , Animais , Diferenciação Celular , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Fosforilação Oxidativa
19.
J Cell Physiol ; 224(1): 152-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20301195

RESUMO

Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pK(a) value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution.


Assuntos
Amantadina/farmacologia , Amitriptilina/farmacologia , Cinarizina/farmacologia , Flavoxato/farmacologia , Lisossomos/efeitos dos fármacos , Amantadina/química , Amantadina/metabolismo , Aminas , Amitriptilina/química , Amitriptilina/metabolismo , Cátions , Linhagem Celular Tumoral , Cinarizina/química , Cinarizina/metabolismo , Simulação por Computador , Retroalimentação Fisiológica , Flavoxato/química , Flavoxato/metabolismo , Corantes Fluorescentes , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Tamanho das Organelas , Permeabilidade
20.
J Neurochem ; 114(3): 697-705, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20477941

RESUMO

Effects of the antidepressant fluoxetine on stimulation-dependent synaptic vesicle exocytosis were examined in cultured primary hippocampal neurons. Synaptic vesicles were fluorescently labeled in vitro with FM1-43, washed and subsequently destained in two consecutive cycles. Exocytosis was triggered by electric field stimulation and imaged by fluorescence microscopy. In control preparations, the second staining-destaining cycle caused a significant reduction of relative fluorescence loss, number of active synapses and half-decay time (t(50)). These fatigue effects were largely prevented by short-term administration of 1 microM fluoxetine, which was present before and during the second stimulation cycle. Fluoxetine concentrations above 10 microM inhibited exocytosis almost completely but showed no other toxic effects on neurons. Stressed neurons, grown under hyperosmotic conditions, were even more fatigue-protected by fluoxetine. These observations support the idea that therapeutic concentrations of fluoxetine enhance the recovery of neurotransmission from exhausting stimuli in healthy and in hyperosmotically stressed neurons as well.


Assuntos
Exocitose/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Estimulação Elétrica , Exocitose/fisiologia , Hipocampo/metabolismo , Compostos de Piridínio , Compostos de Amônio Quaternário , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA