Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 377(6601): 86-90, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771913

RESUMO

Characterizing past climate states is crucial for understanding the future consequences of ongoing greenhouse gas emissions. Here, we revisit the benchmark time series for deep ocean temperature across the past 65 million years using clumped isotope thermometry. Our temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope-based reconstructions, highlighting the likely influence of changes in deep ocean pH and/or seawater oxygen isotope composition on classical oxygen isotope records of the Cenozoic. In addition, our data reveal previously unrecognized large swings in deep ocean temperature during early Eocene acute greenhouse warmth. Our results call for a reassessment of the Cenozoic history of ocean temperatures to achieve a more accurate understanding of the nature of climatic responses to tectonic events and variable greenhouse forcing.

2.
Nat Commun ; 10(1): 808, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778057

RESUMO

Major hydrocarbon accumulations occur in traps associated with salt domes. Whereas some of these hydrocarbons remain to be extracted for economic use, significant amounts have degraded in the subsurface, yielding mineral precipitates as byproducts. Salt domes of the Gulf of Mexico Basin typically exhibit extensive deposits of carbonate that form as cap rock atop salt structures. Despite previous efforts to model cap rock formation, the details of subsurface reactions (including the role of microorganisms) remain largely unknown. Here we show that cap rock mineral precipitation occurred via closed-system sulfate reduction, as indicated by new sulfur isotope data. 13C-depleted carbonate carbon isotope compositions and low clumped isotope-derived carbonate formation temperatures indicate that microbial, sulfate-dependent, anaerobic oxidation of methane (AOM) contributed to carbonate formation. These findings suggest that AOM serves as an unrecognized methane sink that reduces methane emissions in salt dome settings perhaps associated with an extensive, deep subsurface biosphere.


Assuntos
Carbonatos/química , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Anaerobiose , Carbonatos/metabolismo , Golfo do México , Louisiana , Oxirredução , Sulfatos/química , Enxofre , Isótopos de Enxofre/análise , Texas
3.
Geobiology ; 15(1): 51-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392225

RESUMO

The chromium isotope system (53 Cr/52 Cr expressed as δ53 Cr relative to NIST SRM 979) is potentially a powerful proxy for the redox state of the ocean-atmosphere system, but a lack of temporally continuous, well-calibrated archives has limited its application to date. Marine carbonates could potentially serve as a common and continuous Cr isotope archive. Here, we present the first evaluation of planktonic foraminiferal calcite as an archive of seawater δ53 Cr. We show that single foraminiferal species from globally distributed core tops yielded variable δ53 Cr, ranging from 0.1‰ to 2.5‰. These values do not match with the existing measurements of seawater δ53 Cr. Further, within a single core-top, species with similar water column distributions (i.e., depth habitats) yielded variable δ53 Cr values. In addition, mixed layer and thermocline species do not consistently exhibit decreasing trends in δ53 Cr as expected based on current understanding of Cr cycling in the ocean. These observations suggest that either seawater δ53 Cr is more heterogeneous than previously thought or that there is significant and species-dependent Cr isotope fractionation during foraminiferal calcification. Given that the δ53 Cr variability is comparable to that observed in geological samples throughout Earth's history, interpreting planktonic foraminiferal δ53 Cr without calibrating modern foraminifera further, and without additional seawater measurements, would lead to erroneous conclusions. Our core-top survey clearly indicates that planktonic foraminifera are not a straightforward δ53 Cr archive and should not be used to study marine redox evolution without additional study. It likewise cautions against the use of δ53 Cr in bulk carbonate or other biogenic archives pending further work on vital effects and the geographic heterogeneity of the Cr isotope composition of seawater.


Assuntos
Organismos Aquáticos/química , Isótopos do Cromo/análise , Foraminíferos/química , Plâncton/parasitologia , Água do Mar/parasitologia
4.
Nat Commun ; 7: 12274, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27447820

RESUMO

Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

5.
Geobiology ; 13(1): 53-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25515686

RESUMO

Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.


Assuntos
Carbonatos/análise , Sedimentos Geológicos/análise , Lagos/análise , Limnologia/métodos , Termometria , Colúmbia Britânica , Isótopos de Oxigênio/análise
6.
J Mass Spectrom ; 44(9): 1318-29, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19621330

RESUMO

The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA