Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Heart Fail Rev ; 27(2): 655-663, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34036472

RESUMO

Numerous models and biomarkers have been proposed to estimate prognosis and improve decision-making in patients with acute heart failure (AHF). The present literature review provides a critical appraisal of externally validated prognostic models in AHF, combining clinical data and biomarkers. We perform a literature review of clinical studies, using the following terms: "acute heart failure," "acute decompensated heart failure," "prognostic models," "risk scores," "mortality," "death," "hospitalization," "admission," and "biomarkers." We searched MEDLINE and EMBASE databases from 1990 to 2020 for studies documenting prognostic models in AHF. External validation of each prognostic model to another AHF cohort, containing at least one biomarker, was prerequisites for study selection. Among 358 initially screened studies, 9 of them fulfilled all searching criteria. The majority of prognostic models were simplified, including a narrow number of variables (up to 10), with good performance regarding calibration and discrimination (c-statistics > 0.65). Unfortunately, the derived and validated cohorts showed a wide variety in patients' characteristics (e.g., cause of AHF and therapy). Moreover, the prognostic models used various time-points and a plethora of combinations of variables determining different cut-off values. Although the application of valid prognostic models in AHF population is quite promising, a precise methodological approach should be set for the derivation and validation of prognostic models in AHF with unified characteristics to establish an effective performance in clinical practice.


Assuntos
Insuficiência Cardíaca , Doença Aguda , Biomarcadores , Insuficiência Cardíaca/epidemiologia , Hospitalização , Humanos , Prognóstico
2.
Cochrane Database Syst Rev ; 12: CD002042, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932836

RESUMO

BACKGROUND: The optimal haemoglobin threshold for use of red blood cell (RBC) transfusions in anaemic patients remains an active field of research. Blood is a scarce resource, and in some countries, transfusions are less safe than in others because of inadequate testing for viral pathogens. If a liberal transfusion policy does not improve clinical outcomes, or if it is equivalent, then adopting a more restrictive approach could be recognised as the standard of care.  OBJECTIVES: The aim of this review update was to compare 30-day mortality and other clinical outcomes for participants randomised to restrictive versus liberal red blood cell (RBC) transfusion thresholds (triggers) for all clinical conditions. The restrictive transfusion threshold uses a lower haemoglobin concentration as a threshold for transfusion (most commonly, 7.0 g/dL to 8.0 g/dL), and the liberal transfusion threshold uses a higher haemoglobin concentration as a threshold for transfusion (most commonly, 9.0 g/dL to 10.0 g/dL). SEARCH METHODS: We identified trials through updated searches: CENTRAL (2020, Issue 11), MEDLINE (1946 to November 2020), Embase (1974 to November 2020), Transfusion Evidence Library (1950 to November 2020), Web of Science Conference Proceedings Citation Index (1990 to November 2020), and trial registries (November 2020). We  checked the reference lists of other published reviews and relevant papers to identify additional trials. We were aware of one trial identified in earlier searching that was in the process of being published (in February 2021), and we were able to include it before this review was finalised. SELECTION CRITERIA: We included randomised trials of surgical or medical participants that recruited adults or children, or both. We excluded studies that focused on neonates. Eligible trials assigned intervention groups on the basis of different transfusion schedules or thresholds or 'triggers'. These thresholds would be defined by a haemoglobin (Hb) or haematocrit (Hct) concentration below which an RBC transfusion would be administered; the haemoglobin concentration remains the most commonly applied marker of the need for RBC transfusion in clinical practice. We included trials in which investigators had allocated participants to higher thresholds or more liberal transfusion strategies compared to more restrictive ones, which might include no transfusion. As in previous versions of this review, we did not exclude unregistered trials published after 2010 (as per the policy of the Cochrane Injuries Group, 2015), however, we did conduct analyses to consider the differential impact of results of trials for which prospective registration could not be confirmed.   DATA COLLECTION AND ANALYSIS: We identified trials for inclusion and extracted data using Cochrane methods. We pooled risk ratios of clinical outcomes across trials using a random-effects model. Two review authors independently extracted data and assessed risk of bias. We conducted predefined analyses by clinical subgroups. We defined participants randomly allocated to the lower transfusion threshold as being in the 'restrictive transfusion' group and those randomly allocated to the higher transfusion threshold as being in the 'liberal transfusion' group. MAIN RESULTS: A total of 48 trials, involving data from 21,433 participants (at baseline), across a range of clinical contexts (e.g. orthopaedic, cardiac, or vascular surgery; critical care; acute blood loss (including gastrointestinal bleeding); acute coronary syndrome; cancer; leukaemia; haematological malignancies), met the eligibility criteria. The haemoglobin concentration used to define the restrictive transfusion group in most trials (36) was between 7.0 g/dL and 8.0 g/dL.  Most trials included only adults; three trials focused on children. The included studies were generally at low risk of bias for key domains including allocation concealment and incomplete outcome data. Restrictive transfusion strategies reduced the risk of receiving at least one RBC transfusion by 41% across a broad range of clinical contexts (risk ratio (RR) 0.59, 95% confidence interval (CI) 0.53 to 0.66; 42 studies, 20,057 participants; high-quality evidence), with a large amount of heterogeneity between trials (I² = 96%). Overall, restrictive transfusion strategies did not increase or decrease the risk of 30-day mortality compared with liberal transfusion strategies (RR 0.99, 95% CI 0.86 to 1.15; 31 studies, 16,729 participants; I² = 30%; moderate-quality evidence) or any of the other outcomes assessed (i.e. cardiac events (low-quality evidence), myocardial infarction, stroke, thromboembolism (all high-quality evidence)). High-quality evidence shows that the liberal transfusion threshold did not affect the risk of infection (pneumonia, wound infection, or bacteraemia). Transfusion-specific reactions are uncommon and were inconsistently reported within trials. We noted less certainty in the strength of evidence to support the safety of restrictive transfusion thresholds for the following predefined clinical subgroups: myocardial infarction, vascular surgery, haematological malignancies, and chronic bone-marrow disorders. AUTHORS' CONCLUSIONS: Transfusion at a restrictive haemoglobin concentration decreased the proportion of people exposed to RBC transfusion by 41% across a broad range of clinical contexts. Across all trials, no evidence suggests that a restrictive transfusion strategy impacted 30-day mortality, mortality at other time points, or morbidity (i.e. cardiac events, myocardial infarction, stroke, pneumonia, thromboembolism, infection) compared with a liberal transfusion strategy. Despite including 17 more randomised trials (and 8846 participants), data remain insufficient to inform the safety of transfusion policies in important and selected clinical contexts, such as myocardial infarction, chronic cardiovascular disease, neurological injury or traumatic brain injury, stroke, thrombocytopenia, and cancer or haematological malignancies, including chronic bone marrow failure.  Further work is needed to improve our understanding of outcomes other than mortality. Most trials compared only two separate thresholds for haemoglobin concentration, which may not identify the actual optimal threshold for transfusion in a particular patient. Haemoglobin concentration may not be the most informative marker of the need for transfusion in individual patients with different degrees of physiological adaptation to anaemia. Notwithstanding these issues, overall findings provide good evidence that transfusions with allogeneic RBCs can be avoided in most patients with haemoglobin thresholds between the range of 7.0 g/dL and 8.0 g/dL. Some patient subgroups might benefit from RBCs to maintain higher haemoglobin concentrations; research efforts should focus on these clinical contexts.


Assuntos
Anemia , Transfusão de Eritrócitos , Anemia/terapia , Hematócrito , Hemoglobinas , Humanos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Cochrane Database Syst Rev ; 7: CD003146, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716555

RESUMO

BACKGROUND: Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Stroke affects around 10% of children with sickle cell anaemia (HbSS). Chronic blood transfusions may reduce the risk of vaso-occlusion and stroke by diluting the proportion of sickled cells in the circulation. This is an update of a Cochrane Review first published in 2002, and last updated in 2017. OBJECTIVES: To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease for primary and secondary stroke prevention (excluding silent cerebral infarcts). SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 8 October 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register: 19 September 2019. SELECTION CRITERIA: Randomised controlled trials comparing red blood cell transfusions as prophylaxis for stroke in people with sickle cell disease to alternative or standard treatment. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS: We included five trials (660 participants) published between 1998 and 2016. Four of these trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of sickle cell disease. Three trials compared regular red cell transfusions to standard care in primary prevention of stroke: two in children with no previous long-term transfusions; and one in children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea (hydroxycarbamide) and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children); and one in secondary prevention (children and adolescents). The quality of the evidence was very low to moderate across different outcomes according to GRADE methodology. This was due to the trials being at a high risk of bias due to lack of blinding, indirectness and imprecise outcome estimates. Red cell transfusions versus standard care Children with no previous long-term transfusions Long-term transfusions probably reduce the incidence of clinical stroke in children with a higher risk of stroke (abnormal transcranial doppler velocities or previous history of silent cerebral infarct), risk ratio 0.12 (95% confidence interval 0.03 to 0.49) (two trials, 326 participants), moderate quality evidence. Long-term transfusions may: reduce the incidence of other sickle cell disease-related complications (acute chest syndrome, risk ratio 0.24 (95% confidence interval 0.12 to 0.48)) (two trials, 326 participants); increase quality of life (difference estimate -0.54, 95% confidence interval -0.92 to -0.17) (one trial, 166 participants); but make little or no difference to IQ scores (least square mean: 1.7, standard error 95% confidence interval -1.1 to 4.4) (one trial, 166 participants), low quality evidence. We are very uncertain whether long-term transfusions: reduce the risk of transient ischaemic attacks, Peto odds ratio 0.13 (95% confidence interval 0.01 to 2.11) (two trials, 323 participants); have any effect on all-cause mortality, no deaths reported (two trials, 326 participants); or increase the risk of alloimmunisation, risk ratio 3.16 (95% confidence interval 0.18 to 57.17) (one trial, 121 participants), very low quality evidence. Children and adolescents with previous long-term transfusions (one trial, 79 participants) We are very uncertain whether continuing long-term transfusions reduces the incidence of: stroke, risk ratio 0.22 (95% confidence interval 0.01 to 4.35); or all-cause mortality, Peto odds ratio 8.00 (95% confidence interval 0.16 to 404.12), very low quality evidence. Several review outcomes were only reported in one trial arm (sickle cell disease-related complications, alloimmunisation, transient ischaemic attacks). The trial did not report neurological impairment, or quality of life. Hydroxyurea and phlebotomy versus red cell transfusions and chelation Neither trial reported on neurological impairment, alloimmunisation, or quality of life. Primary prevention, children (one trial, 121 participants) Switching to hydroxyurea and phlebotomy may have little or no effect on liver iron concentrations, mean difference -1.80 mg Fe/g dry-weight liver (95% confidence interval -5.16 to 1.56), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: risk of stroke (no strokes); all-cause mortality (no deaths); transient ischaemic attacks, risk ratio 1.02 (95% confidence interval 0.21 to 4.84); or other sickle cell disease-related complications (acute chest syndrome, risk ratio 2.03 (95% confidence interval 0.39 to 10.69)), very low quality evidence. Secondary prevention, children and adolescents (one trial, 133 participants) Switching to hydroxyurea and phlebotomy may: increase the risk of sickle cell disease-related serious adverse events, risk ratio 3.10 (95% confidence interval 1.42 to 6.75); but have little or no effect on median liver iron concentrations (hydroxyurea, 17.3 mg Fe/g dry-weight liver (interquartile range 10.0 to 30.6)); transfusion 17.3 mg Fe/g dry-weight liver (interquartile range 8.8 to 30.7), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy: increases the risk of stroke, risk ratio 14.78 (95% confidence interval 0.86 to 253.66); or has any effect on all-cause mortality, Peto odds ratio 0.98 (95% confidence interval 0.06 to 15.92); or transient ischaemic attacks, risk ratio 0.66 (95% confidence interval 0.25 to 1.74), very low quality evidence. AUTHORS' CONCLUSIONS: There is no evidence for managing adults, or children who do not have HbSS sickle cell disease. In children who are at higher risk of stroke and have not had previous long-term transfusions, there is moderate quality evidence that long-term red cell transfusions reduce the risk of stroke, and low quality evidence they also reduce the risk of other sickle cell disease-related complications. In primary and secondary prevention of stroke there is low quality evidence that switching to hydroxyurea with phlebotomy has little or no effect on the liver iron concentration. In secondary prevention of stroke there is low-quality evidence that switching to hydroxyurea with phlebotomy increases the risk of sickle cell disease-related events. All other evidence in this review is of very low quality.


Assuntos
Anemia Falciforme/complicações , Transfusão de Eritrócitos , Prevenção Primária , Prevenção Secundária , Acidente Vascular Cerebral/prevenção & controle , Adolescente , Anemia Falciforme/sangue , Antidrepanocíticos/efeitos adversos , Antidrepanocíticos/uso terapêutico , Transfusão de Sangue , Criança , Pré-Escolar , Término Precoce de Ensaios Clínicos , Transfusão de Eritrócitos/efeitos adversos , Hemoglobina Falciforme , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Quelantes de Ferro/uso terapêutico , Flebotomia/efeitos adversos , Acidente Vascular Cerebral/etiologia , Adulto Jovem
4.
Cochrane Database Syst Rev ; 7: CD003149, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32614473

RESUMO

BACKGROUND: Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Surgical interventions are more common in people with SCD, and occur at much younger ages than in the general population. Blood transfusions are frequently used prior to surgery and several regimens are used but there is no consensus over the best method or the necessity of transfusion in specific surgical cases. This is an update of a Cochrane Review. OBJECTIVES: To determine whether there is evidence that preoperative blood transfusion in people with SCD undergoing elective or emergency surgery reduces mortality and perioperative or sickle cell-related serious adverse events. To compare the effectiveness of different transfusion regimens (aggressive or conservative) if preoperative transfusions are indicated in people with SCD. SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 28 January 2020 We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 19 September 2019. SELECTION CRITERIA: All randomised controlled trials and quasi-randomised controlled trials comparing preoperative blood transfusion regimens to different regimens or no transfusion in people with SCD undergoing elective or emergency surgery. There was no restriction by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS: Three trials with 990 participants were eligible for inclusion in the review. There were no ongoing trials identified. These trials were conducted between 1988 and 2011. The majority of people included had haemoglobin (Hb) SS SCD. The majority of surgical procedures were considered low or intermediate risk for developing sickle cell-related complications. Aggressive versus simple red blood cell transfusions One trial (551 participants) compared an aggressive transfusion regimen (decreasing sickle haemoglobin to less than 30%) to a simple transfusion regimen (increasing haemoglobin to 100 g/L). This trial re-randomised participants and therefore quantitative analysis was only possible on two subsets of data: participants undergoing cholecystectomy (230 participants); and participants undergoing tonsillectomy or adenoidectomy surgeries (107 participants). Data were not combined as we do not know if any participant received both surgeries. Overall, the quality of the evidence was very low across different outcomes according to GRADE methodology. This was due to the trial being at high risk of bias primarily due to lack of blinding, indirectness and the outcome estimates being imprecise. Cholecystectomy subgroup results are reported in the abstract. Results for both subgroups were similar. There was no difference in all-cause mortality between people receiving aggressive transfusions and those receiving conservative transfusions. No deaths occurred in either subgroup. There were no differences between the aggressive transfusion group and conservative transfusion group in the number of people developing: • an acute chest syndrome, risk ratio (RR) 0.84 (95% confidence interval (CI) 0.38 to 1.84) (one trial, 230 participants, very low-quality evidence); • vaso-occlusive crisis, risk ratio 0.30 (95% CI 0.09 to 1.04) (one trial, 230 participants, very low quality evidence); • serious infection, risk ratio 1.75 (95% CI 0.59 to 5.18) (one trial, 230 participants, very low-quality evidence); • any perioperative complications, RR 0.75 (95% CI 0.36 to 1.55) (one trial, 230 participants, very low-quality evidence); • a transfusion-related complication, RR 1.85 (95% CI 0.89 to 3.88) (one trial, 230 participants, very low-quality evidence). Preoperative transfusion versus no preoperative transfusion Two trials (434 participants) compared a preoperative transfusion plus standard care to a group receiving standard care. Overall, the quality of the evidence was low to very low across different outcomes according to GRADE methodology. This was due to the trials being at high risk of bias due to lack of blinding, and outcome estimates being imprecise. One trial was stopped early because more people in the no transfusion arm developed an acute chest syndrome. There was no difference in all-cause mortality between people receiving preoperative transfusions and those receiving no preoperative transfusions (two trials, 434 participants, no deaths occurred). There was significant heterogeneity between the two trials in the number of people developing an acute chest syndrome, a meta-analysis was therefore not performed. One trial showed a reduced number of people developing acute chest syndrome between people receiving preoperative transfusions and those receiving no preoperative transfusions, risk ratio 0.11 (95% confidence interval 0.01 to 0.80) (65 participants), whereas the other trial did not, RR 4.81 (95% CI 0.23 to 99.61) (369 participants). There were no differences between the preoperative transfusion groups and the groups without preoperative transfusion in the number of people developing: • a vaso-occlusive crisis, Peto odds ratio (OR) 1.91 (95% confidence interval 0.61 to 6.04) (two trials, 434 participants, very low-quality evidence). • a serious infection, Peto OR 1.29 (95% CI 0.29 to 5.71) (two trials, 434 participants, very low-quality evidence); • any perioperative complications, RR 0.24 (95% CI 0.03 to 2.05) (one trial, 65 participants, low-quality evidence). There was an increase in the number of people developing circulatory overload in those receiving preoperative transfusions compared to those not receiving preoperative transfusions in one of the two trials, and no events were seen in the other trial (no meta-analysis performed). AUTHORS' CONCLUSIONS: There is insufficient evidence from randomised trials to determine whether conservative preoperative blood transfusion is as effective as aggressive preoperative blood transfusion in preventing sickle-related or surgery-related complications in people with HbSS disease. There is very low quality evidence that preoperative blood transfusion may prevent development of acute chest syndrome. Due to lack of evidence this review cannot comment on management for people with HbSC or HbSß+ disease or for those with high baseline haemoglobin concentrations.


Assuntos
Anemia Falciforme/cirurgia , Transfusão de Sangue/métodos , Hemoglobina Falciforme , Cuidados Pré-Operatórios/métodos , Síndrome Torácica Aguda/etiologia , Adenoidectomia , Anemia Falciforme/sangue , Anemia Falciforme/complicações , Colecistectomia/efeitos adversos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tonsilectomia , Reação Transfusional
5.
Cochrane Database Syst Rev ; 4: CD012389, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250453

RESUMO

BACKGROUND: Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES: To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 14 November 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 07 October 2019. SELECTION CRITERIA: Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. MAIN RESULTS: We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention. Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents). The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence). No deaths were reported in either trial. Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence). Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial) Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence). We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence). The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence). Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence). Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS: We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD. Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises). In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions. Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention. All other evidence in this review is of very low-quality.


Assuntos
Anemia Falciforme/complicações , Antidrepanocíticos/uso terapêutico , Infarto Encefálico/prevenção & controle , Transfusão de Eritrócitos , Hidroxiureia/uso terapêutico , Flebotomia , Adolescente , Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/efeitos adversos , Infarto Encefálico/etiologia , Causas de Morte , Criança , Cognição/fisiologia , Humanos , Hidroxiureia/efeitos adversos , Flebotomia/efeitos adversos , Prevenção Primária/métodos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária/métodos , Acidente Vascular Cerebral/prevenção & controle
6.
Cochrane Database Syst Rev ; 1: CD012643, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31930780

RESUMO

BACKGROUND: Hodgkin lymphoma (HL) is one of the most common haematological malignancies in young adults and, with cure rates of 90%, has become curable for the majority of individuals. Positron emission tomography (PET) is an imaging tool used to monitor a tumour's metabolic activity, stage and progression. Interim PET during chemotherapy has been posited as a prognostic factor in individuals with HL to distinguish between those with a poor prognosis and those with a better prognosis. This distinction is important to inform decision-making on the clinical pathway of individuals with HL. OBJECTIVES: To determine whether in previously untreated adults with HL receiving first-line therapy, interim PET scan results can distinguish between those with a poor prognosis and those with a better prognosis, and thereby predict survival outcomes in each group. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL and conference proceedings up until April 2019. We also searched one trial registry (ClinicalTrials.gov). SELECTION CRITERIA: We included retrospective and prospective studies evaluating interim PET scans in a minimum of 10 individuals with HL (all stages) undergoing first-line therapy. Interim PET was defined as conducted during therapy (after one, two, three or four treatment cycles). The minimum follow-up period was at least 12 months. We excluded studies if the trial design allowed treatment modification based on the interim PET scan results. DATA COLLECTION AND ANALYSIS: We developed a data extraction form according to the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Two teams of two review authors independently screened the studies, extracted data on overall survival (OS), progression-free survival (PFS) and PET-associated adverse events (AEs), assessed risk of bias (per outcome) according to the Quality in Prognosis Studies (QUIPS) tool, and assessed the certainty of the evidence (GRADE). We contacted investigators to obtain missing information and data. MAIN RESULTS: Our literature search yielded 11,277 results. In total, we included 23 studies (99 references) with 7335 newly-diagnosed individuals with classic HL (all stages). Participants in 16 studies underwent (interim) PET combined with computed tomography (PET-CT), compared to PET only in the remaining seven studies. The standard chemotherapy regimen included ABVD (16) studies, compared to BEACOPP or other regimens (seven studies). Most studies (N = 21) conducted interim PET scans after two cycles (PET2) of chemotherapy, although PET1, PET3 and PET4 were also reported in some studies. In the meta-analyses, we used PET2 data if available as we wanted to ensure homogeneity between studies. In most studies interim PET scan results were evaluated according to the Deauville 5-point scale (N = 12). Eight studies were not included in meta-analyses due to missing information and/or data; results were reported narratively. For the remaining studies, we pooled the unadjusted hazard ratio (HR). The timing of the outcome measurement was after two or three years (the median follow-up time ranged from 22 to 65 months) in the pooled studies. Eight studies explored the independent prognostic ability of interim PET by adjusting for other established prognostic factors (e.g. disease stage, B symptoms). We did not pool the results because the multivariable analyses adjusted for a different set of factors in each study. Overall survival Twelve (out of 23) studies reported OS. Six of these were assessed as low risk of bias in all of the first four domains of QUIPS (study participation, study attrition, prognostic factor measurement and outcome measurement). The other six studies were assessed as unclear, moderate or high risk of bias in at least one of these four domains. Four studies were assessed as low risk, and eight studies as high risk of bias for the domain other prognostic factors (covariates). Nine studies were assessed as low risk, and three studies as high risk of bias for the domain 'statistical analysis and reporting'. We pooled nine studies with 1802 participants. Participants with HL who have a negative interim PET scan result probably have a large advantage in OS compared to those with a positive interim PET scan result (unadjusted HR 5.09, 95% confidence interval (CI) 2.64 to 9.81, I² = 44%, moderate-certainty evidence). In absolute values, this means that 900 out of 1000 participants with a negative interim PET scan result will probably survive longer than three years compared to 585 (95% CI 356 to 757) out of 1000 participants with a positive result. Adjusted results from two studies also indicate an independent prognostic value of interim PET scan results (moderate-certainty evidence). Progression-free survival Twenty-one studies reported PFS. Eleven out of 21 were assessed as low risk of bias in the first four domains. The remaining were assessed as unclear, moderate or high risk of bias in at least one of the four domains. Eleven studies were assessed as low risk, and ten studies as high risk of bias for the domain other prognostic factors (covariates). Eight studies were assessed as high risk, thirteen as low risk of bias for statistical analysis and reporting. We pooled 14 studies with 2079 participants. Participants who have a negative interim PET scan result may have an advantage in PFS compared to those with a positive interim PET scan result, but the evidence is very uncertain (unadjusted HR 4.90, 95% CI 3.47 to 6.90, I² = 45%, very low-certainty evidence). This means that 850 out of 1000 participants with a negative interim PET scan result may be progression-free longer than three years compared to 451 (95% CI 326 to 569) out of 1000 participants with a positive result. Adjusted results (not pooled) from eight studies also indicate that there may be an independent prognostic value of interim PET scan results (low-certainty evidence). PET-associated adverse events No study measured PET-associated AEs. AUTHORS' CONCLUSIONS: This review provides moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict progression-free survival in treated individuals with HL. This evidence is primarily based on unadjusted data. More studies are needed to test the adjusted prognostic ability of interim PET against established prognostic factors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doença de Hodgkin/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Quimiorradioterapia , Tomada de Decisões , Progressão da Doença , Intervalo Livre de Doença , Humanos , Prognóstico , Adulto Jovem
7.
Cochrane Database Syst Rev ; 7: CD012022, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735048

RESUMO

BACKGROUND: Chronic lymphocytic leukaemia (CLL) is the most common cancer of the lymphatic system in Western countries. Several clinical and biological factors for CLL have been identified. However, it remains unclear which of the available prognostic models combining those factors can be used in clinical practice to predict long-term outcome in people newly-diagnosed with CLL. OBJECTIVES: To identify, describe and appraise all prognostic models developed to predict overall survival (OS), progression-free survival (PFS) or treatment-free survival (TFS) in newly-diagnosed (previously untreated) adults with CLL, and meta-analyse their predictive performances. SEARCH METHODS: We searched MEDLINE (from January 1950 to June 2019 via Ovid), Embase (from 1974 to June 2019) and registries of ongoing trials (to 5 March 2020) for development and validation studies of prognostic models for untreated adults with CLL. In addition, we screened the reference lists and citation indices of included studies. SELECTION CRITERIA: We included all prognostic models developed for CLL which predict OS, PFS, or TFS, provided they combined prognostic factors known before treatment initiation, and any studies that tested the performance of these models in individuals other than the ones included in model development (i.e. 'external model validation studies'). We included studies of adults with confirmed B-cell CLL who had not received treatment prior to the start of the study. We did not restrict the search based on study design. DATA COLLECTION AND ANALYSIS: We developed a data extraction form to collect information based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Independent pairs of review authors screened references, extracted data and assessed risk of bias according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST). For models that were externally validated at least three times, we aimed to perform a quantitative meta-analysis of their predictive performance, notably their calibration (proportion of people predicted to experience the outcome who do so) and discrimination (ability to differentiate between people with and without the event) using a random-effects model. When a model categorised individuals into risk categories, we pooled outcome frequencies per risk group (low, intermediate, high and very high). We did not apply GRADE as guidance is not yet available for reviews of prognostic models. MAIN RESULTS: From 52 eligible studies, we identified 12 externally validated models: six were developed for OS, one for PFS and five for TFS. In general, reporting of the studies was poor, especially predictive performance measures for calibration and discrimination; but also basic information, such as eligibility criteria and the recruitment period of participants was often missing. We rated almost all studies at high or unclear risk of bias according to PROBAST. Overall, the applicability of the models and their validation studies was low or unclear; the most common reasons were inappropriate handling of missing data and serious reporting deficiencies concerning eligibility criteria, recruitment period, observation time and prediction performance measures. We report the results for three models predicting OS, which had available data from more than three external validation studies: CLL International Prognostic Index (CLL-IPI) This score includes five prognostic factors: age, clinical stage, IgHV mutational status, B2-microglobulin and TP53 status. Calibration: for the low-, intermediate- and high-risk groups, the pooled five-year survival per risk group from validation studies corresponded to the frequencies observed in the model development study. In the very high-risk group, predicted survival from CLL-IPI was lower than observed from external validation studies. Discrimination: the pooled c-statistic of seven external validation studies (3307 participants, 917 events) was 0.72 (95% confidence interval (CI) 0.67 to 0.77). The 95% prediction interval (PI) of this model for the c-statistic, which describes the expected interval for the model's discriminative ability in a new external validation study, ranged from 0.59 to 0.83. Barcelona-Brno score Aimed at simplifying the CLL-IPI, this score includes three prognostic factors: IgHV mutational status, del(17p) and del(11q). Calibration: for the low- and intermediate-risk group, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of four external validation studies (1755 participants, 416 events) was 0.64 (95% CI 0.60 to 0.67); 95% PI 0.59 to 0.68. MDACC 2007 index score The authors presented two versions of this model including six prognostic factors to predict OS: age, B2-microglobulin, absolute lymphocyte count, gender, clinical stage and number of nodal groups. Only one validation study was available for the more comprehensive version of the model, a formula with a nomogram, while seven studies (5127 participants, 994 events) validated the simplified version of the model, the index score. Calibration: for the low- and intermediate-risk groups, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of the seven external validation studies for the index score was 0.65 (95% CI 0.60 to 0.70); 95% PI 0.51 to 0.77. AUTHORS' CONCLUSIONS: Despite the large number of published studies of prognostic models for OS, PFS or TFS for newly-diagnosed, untreated adults with CLL, only a minority of these (N = 12) have been externally validated for their respective primary outcome. Three models have undergone sufficient external validation to enable meta-analysis of the model's ability to predict survival outcomes. Lack of reporting prevented us from summarising calibration as recommended. Of the three models, the CLL-IPI shows the best discrimination, despite overestimation. However, performance of the models may change for individuals with CLL who receive improved treatment options, as the models included in this review were tested mostly on retrospective cohorts receiving a traditional treatment regimen. In conclusion, this review shows a clear need to improve the conducting and reporting of both prognostic model development and external validation studies. For prognostic models to be used as tools in clinical practice, the development of the models (and their subsequent validation studies) should adapt to include the latest therapy options to accurately predict performance. Adaptations should be timely.


Assuntos
Leucemia Linfocítica Crônica de Células B/mortalidade , Modelos Teóricos , Adulto , Fatores Etários , Viés , Biomarcadores Tumorais , Calibragem , Intervalos de Confiança , Análise Discriminante , Intervalo Livre de Doença , Feminino , Genes p53/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos B/genética , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética
8.
J Card Surg ; 35(2): 304-312, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765036

RESUMO

INTRODUCTION: Arterial graft physiology influences the long-term outcome of coronary artery bypass grafting (CABG). We studied factors that can affect the overall resistance to flow using internal mammary artery grafting to the left anterior descending artery. METHODS: This was a prospective, nonrandomized observational study of 100 consecutive patients who underwent elective on-pump isolated or combined valve surgery and CABG. Coronary stenoses were assessed using conventional and quantitative coronary angiography assessment. The flow and pulsatility index (PI) of the grafts were assessed by transit-time flowmetry during cardioplegic arrest and at the end of the operation. Fractional polynomials were used to explore linearity, followed by multivariable regression analysis. RESULTS: Univariate analysis demonstrated higher flows at the end of the operation in patients who had higher flows with the cross-clamp on (P < .001), in males (P = .004), in patients with a low PI at the end of the operation (P = .04), and in patients with a larger size of the recipient artery (P = .005). Multivariable regression analysis showed that the graft flow at the end of the operation was significantly associated with the mean flow with the cross-clamp on (P < .001), sex (P = .003), and PI at the end of the operation (P = .003). Concomitant valve surgery did not influence flows. Male patients had 18 mL/min higher flow. CONCLUSIONS: The graft flow at the end of the operation can be determined by the flow with the cross-clamp on, the PI with the cross-clamp off and coronary artery. We reported differences in the graft flows between sexes, and for first the time, we introduced the concepts of "adequate flow" and "resistance-to-forward-flow" for patent coronary grafts.


Assuntos
Ponte de Artéria Coronária/métodos , Artéria Torácica Interna/transplante , Grau de Desobstrução Vascular , Idoso , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Masculino , Artéria Torácica Interna/fisiologia , Análise Multivariada , Caracteres Sexuais
9.
Cochrane Database Syst Rev ; 2019(10)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31684693

RESUMO

BACKGROUND: Sickle cell disease is a genetic haemoglobin disorder, which can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Sickle cell disease is one of the most common severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. The two most common chronic chest complications due to sickle cell disease are pulmonary hypertension and chronic sickle lung disease. These complications can lead to morbidity (such as reduced exercise tolerance) and increased mortality. This is an update of a Cochrane Review first published in 2011 and updated in 2014 and 2016. OBJECTIVES: We wanted to determine whether trials involving people with sickle cell disease that compare regular long-term blood transfusion regimens with standard care, hydroxycarbamide (hydroxyurea) any other drug treatment show differences in the following: mortality associated with chronic chest complications; severity of established chronic chest complications; development and progression of chronic chest complications; serious adverse events. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register. Date of the last search: 19 September 2019. We also searched for randomised controlled trials in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 10, 14 November 2018), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 14 November 2018. SELECTION CRITERIA: We included randomised controlled trials of people of any age with one of four common sickle cell disease genotypes, i.e. Hb SS, Sߺ, SC, or Sß+ that compared regular red blood cell transfusion regimens (either simple or exchange transfusions) to hydroxycarbamide, any other drug treatment, or to standard care that were aimed at reducing the development or progression of chronic chest complications (chronic sickle lung and pulmonary hypertension). DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. MAIN RESULTS: No studies matching the selection criteria were found. AUTHORS' CONCLUSIONS: There is a need for randomised controlled trials looking at the role of long-term transfusion therapy in pulmonary hypertension and chronic sickle lung disease. Due to the chronic nature of the conditions, such trials should aim to use a combination of objective and subjective measures to assess participants repeatedly before and after the intervention.


Assuntos
Síndrome Torácica Aguda/terapia , Anemia Falciforme/complicações , Transfusão de Eritrócitos/métodos , Hipertensão Pulmonar/terapia , Síndrome Torácica Aguda/etiologia , Antidrepanocíticos/uso terapêutico , Humanos , Hipertensão Pulmonar/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Cochrane Database Syst Rev ; 11: CD012745, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31778223

RESUMO

BACKGROUND: In the absence of bleeding, plasma is commonly transfused to people prophylactically to prevent bleeding. In this context, it is transfused before operative or invasive procedures (such as liver biopsy or chest drainage tube insertion) in those considered at increased risk of bleeding, typically defined by abnormalities of laboratory tests of coagulation. As plasma contains procoagulant factors, plasma transfusion may reduce perioperative bleeding risk. This outcome has clinical importance given that perioperative bleeding and blood transfusion have been associated with increased morbidity and mortality. Plasma is expensive, and some countries have experienced issues with blood product shortages, donor pool reliability, and incomplete screening for transmissible infections. Thus, although the benefit of prophylactic plasma transfusion has not been well established, plasma transfusion does carry potentially life-threatening risks. OBJECTIVES: To determine the clinical effectiveness and safety of prophylactic plasma transfusion for people with coagulation test abnormalities (in the absence of inherited bleeding disorders or use of anticoagulant medication) requiring non-cardiac surgery or invasive procedures. SEARCH METHODS: We searched for randomised controlled trials (RCTs), without language or publication status restrictions in: Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 7); Ovid MEDLINE (from 1946); Ovid Embase (from 1974); Cumulative Index to Nursing and Allied Health Literature (CINAHL; EBSCOHost) (from 1937); PubMed (e-publications and in-process citations ahead of print only); Transfusion Evidence Library (from 1950); Latin American Caribbean Health Sciences Literature (LILACS) (from 1982); Web of Science: Conference Proceedings Citation Index-Science (CPCI-S) (Thomson Reuters, from 1990); ClinicalTrials.gov; and World Health Organization (WHO) International Clinical Trials Registry Search Platform (ICTRP) to 28 January 2019. SELECTION CRITERIA: We included RCTs comparing: prophylactic plasma transfusion to placebo, intravenous fluid, or no intervention; prophylactic plasma transfusion to alternative pro-haemostatic agents; or different haemostatic thresholds for prophylactic plasma transfusion. We included participants of any age, and we excluded trials incorporating individuals with previous active bleeding, with inherited bleeding disorders, or taking anticoagulant medication before enrolment. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included five trials in this review, all were conducted in high-income countries. Three additional trials are ongoing. One trial compared fresh frozen plasma (FFP) transfusion with no transfusion given. One trial compared FFP or platelet transfusion or both with neither FFP nor platelet transfusion given. One trial compared FFP transfusion with administration of alternative pro-haemostatic agents (factors II, IX, and X followed by VII). One trial compared the use of different transfusion triggers using the international normalised ratio measurement. One trial compared the use of a thromboelastographic-guided transfusion trigger using standard laboratory measurements of coagulation. Four trials enrolled only adults, whereas the fifth trial did not specify participant age. Four trials included only minor procedures that could be performed by the bedside. Only one trial included some participants undergoing major surgical operations. Two trials included only participants in intensive care. Two trials included only participants with liver disease. Three trials did not recruit sufficient participants to meet their pre-calculated sample size. Overall, the quality of evidence was low to very low across different outcomes according to GRADE methodology, due to risk of bias, indirectness, and imprecision. One trial was stopped after recruiting two participants, therefore this review's findings are based on the remaining four trials (234 participants). When plasma transfusion was compared with no transfusion given, we are very uncertain whether there was a difference in 30-day mortality (1 trial comparing FFP or platelet transfusion or both with neither FFP nor platelet transfusion, 72 participants; risk ratio (RR) 0.38, 95% confidence interval (CI) 0.13 to 1.10; very low-quality evidence). We are very uncertain whether there was a difference in major bleeding within 24 hours (1 trial comparing FFP transfusion vs no transfusion, 76 participants; RR 0.33, 95% CI 0.01 to 7.93; very low-quality evidence; 1 trial comparing FFP or platelet transfusion or both with neither FFP nor platelet transfusion, 72 participants; RR 1.59, 95% CI 0.28 to 8.93; very low-quality evidence). We are very uncertain whether there was a difference in the number of blood product transfusions per person (1 trial, 76 participants; study authors reported no difference; very low-quality evidence) or in the number of people requiring transfusion (1 trial comparing FFP or platelet transfusion or both with neither FFP nor platelet transfusion, 72 participants; study authors reported no blood transfusion given; very low-quality evidence) or in the risk of transfusion-related adverse events (acute lung injury) (1 trial, 76 participants; study authors reported no difference; very low-quality evidence). When plasma transfusion was compared with other pro-haemostatic agents, we are very uncertain whether there was a difference in major bleeding (1 trial; 21 participants; no events; very low-quality evidence) or in transfusion-related adverse events (febrile or allergic reactions) (1 trial, 21 participants; RR 9.82, 95% CI 0.59 to 162.24; very low-quality evidence). When different triggers for FFP transfusion were compared, the number of people requiring transfusion may have been reduced (for overall blood products) when a thromboelastographic-guided transfusion trigger was compared with standard laboratory tests (1 trial, 60 participants; RR 0.18, 95% CI 0.08 to 0.39; low-quality evidence). We are very uncertain whether there was a difference in major bleeding (1 trial, 60 participants; RR 0.33, 95% CI 0.01 to 7.87; very low-quality evidence) or in transfusion-related adverse events (allergic reactions) (1 trial; 60 participants; RR 0.33, 95% CI 0.01 to 7.87; very low-quality evidence). Only one trial reported 30-day mortality. No trials reported procedure-related harmful events (excluding bleeding) or quality of life. AUTHORS' CONCLUSIONS: Review findings show uncertainty for the utility and safety of prophylactic FFP use. This is due to predominantly very low-quality evidence that is available for its use over a range of clinically important outcomes, together with lack of confidence in the wider applicability of study findings, given the paucity or absence of study data in settings such as major body cavity surgery, extensive soft tissue surgery, orthopaedic surgery, or neurosurgery. Therefore, from the limited RCT evidence, we can neither support nor oppose the use of prophylactic FFP in clinical practice.


Assuntos
Anticoagulantes/uso terapêutico , Transfusão de Componentes Sanguíneos/métodos , Hemorragia/prevenção & controle , Procedimentos Cirúrgicos Operatórios , Anticoagulantes/efeitos adversos , Hemostáticos/uso terapêutico , Humanos , Plasma , Cuidados Pré-Operatórios , Ensaios Clínicos Controlados Aleatórios como Assunto , Tromboelastografia
11.
Cochrane Database Syst Rev ; 9: CD012643, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31525824

RESUMO

BACKGROUND: Hodgkin lymphoma (HL) is one of the most common haematological malignancies in young adults and, with cure rates of 90%, has become curable for the majority of individuals. Positron emission tomography (PET) is an imaging tool used to monitor a tumour's metabolic activity, stage and progression. Interim PET during chemotherapy has been posited as a prognostic factor in individuals with HL to distinguish between those with a poor prognosis and those with a better prognosis. This distinction is important to inform decision-making on the clinical pathway of individuals with HL. OBJECTIVES: To determine whether in previously untreated adults with HL receiving first-line therapy, interim PET scan results can distinguish between those with a poor prognosis and those with a better prognosis, and thereby predict survival outcomes in each group. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL and conference proceedings up until April 2019. We also searched one trial registry (ClinicalTrials.gov). SELECTION CRITERIA: We included retrospective and prospective studies evaluating interim PET scans in a minimum of 10 individuals with HL (all stages) undergoing first-line therapy. Interim PET was defined as conducted during therapy (after one, two, three or four treatment cycles). The minimum follow-up period was at least 12 months. We excluded studies if the trial design allowed treatment modification based on the interim PET scan results. DATA COLLECTION AND ANALYSIS: We developed a data extraction form according to the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Two teams of two review authors independently screened the studies, extracted data on overall survival (OS), progression-free survival (PFS) and PET-associated adverse events (AEs), assessed risk of bias (per outcome) according to the Quality in Prognosis Studies (QUIPS) tool, and assessed the certainty of the evidence (GRADE). We contacted investigators to obtain missing information and data. MAIN RESULTS: Our literature search yielded 11,277 results. In total, we included 23 studies (99 references) with 7335 newly-diagnosed individuals with classic HL (all stages).Participants in 16 studies underwent (interim) PET combined with computed tomography (PET-CT), compared to PET only in the remaining seven studies. The standard chemotherapy regimen included ABVD (16) studies, compared to BEACOPP or other regimens (seven studies). Most studies (N = 21) conducted interim PET scans after two cycles (PET2) of chemotherapy, although PET1, PET3 and PET4 were also reported in some studies. In the meta-analyses, we used PET2 data if available as we wanted to ensure homogeneity between studies. In most studies interim PET scan results were evaluated according to the Deauville 5-point scale (N = 12).Eight studies were not included in meta-analyses due to missing information and/or data; results were reported narratively. For the remaining studies, we pooled the unadjusted hazard ratio (HR). The timing of the outcome measurement was after two or three years (the median follow-up time ranged from 22 to 65 months) in the pooled studies.Eight studies explored the independent prognostic ability of interim PET by adjusting for other established prognostic factors (e.g. disease stage, B symptoms). We did not pool the results because the multivariable analyses adjusted for a different set of factors in each study.Overall survivalTwelve (out of 23) studies reported OS. Six of these were assessed as low risk of bias in all of the first four domains of QUIPS (study participation, study attrition, prognostic factor measurement and outcome measurement). The other six studies were assessed as unclear, moderate or high risk of bias in at least one of these four domains. Nine studies were assessed as high risk, and three studies as moderate risk of bias for the domain study confounding. Eight studies were assessed as low risk, and four studies as high risk of bias for the domain statistical analysis and reporting.We pooled nine studies with 1802 participants. Participants with HL who have a negative interim PET scan result probably have a large advantage in OS compared to those with a positive interim PET scan result (unadjusted HR 5.09, 95% confidence interval (CI) 2.64 to 9.81, I² = 44%, moderate-certainty evidence). In absolute values, this means that 900 out of 1000 participants with a negative interim PET scan result will probably survive longer than three years compared to 585 (95% CI 356 to 757) out of 1000 participants with a positive result.Adjusted results from two studies also indicate an independent prognostic value of interim PET scan results (moderate-certainty evidence).Progression-free survival Twenty-one studies reported PFS. Eleven out of 21 were assessed as low risk of bias in the first four domains. The remaining were assessed as unclear, moderate or high risk of bias in at least one of the four domains. Eleven studies were assessed as high risk, nine studies as moderate risk and one study as low risk of bias for study confounding. Eight studies were assessed as high risk, three as moderate risk and nine as low risk of bias for statistical analysis and reporting.We pooled 14 studies with 2079 participants. Participants who have a negative interim PET scan result may have an advantage in PFS compared to those with a positive interim PET scan result, but the evidence is very uncertain (unadjusted HR 4.90, 95% CI 3.47 to 6.90, I² = 45%, very low-certainty evidence). This means that 850 out of 1000 participants with a negative interim PET scan result may be progression-free longer than three years compared to 451 (95% CI 326 to 569) out of 1000 participants with a positive result.Adjusted results (not pooled) from eight studies also indicate that there may be an independent prognostic value of interim PET scan results (low-certainty evidence).PET-associated adverse eventsNo study measured PET-associated AEs. AUTHORS' CONCLUSIONS: This review provides moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict progression-free survival in treated individuals with HL. This evidence is primarily based on unadjusted data. More studies are needed to test the adjusted prognostic ability of interim PET against established prognostic factors.


Assuntos
Quimiorradioterapia/métodos , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Progressão da Doença , Intervalo Livre de Doença , Humanos , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
PLoS Med ; 15(2): e1002507, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29489823

RESUMO

BACKGROUND: There is uncertainty about the influence of diet during pregnancy and infancy on a child's immune development. We assessed whether variations in maternal or infant diet can influence risk of allergic or autoimmune disease. METHODS AND FINDINGS: Two authors selected studies, extracted data, and assessed risk of bias. Grading of Recommendations Assessment, Development and Evaluation (GRADE) was used to assess certainty of findings. We searched Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica dataBASE (EMBASE), Web of Science, Central Register of Controlled Trials (CENTRAL), and Literatura Latino Americana em Ciências da Saúde (LILACS) between January 1946 and July 2013 for observational studies and until December 2017 for intervention studies that evaluated the relationship between diet during pregnancy, lactation, or the first year of life and future risk of allergic or autoimmune disease. We identified 260 original studies (964,143 participants) of milk feeding, including 1 intervention trial of breastfeeding promotion, and 173 original studies (542,672 participants) of other maternal or infant dietary exposures, including 80 trials of maternal (n = 26), infant (n = 32), or combined (n = 22) interventions. Risk of bias was high in 125 (48%) milk feeding studies and 44 (25%) studies of other dietary exposures. Evidence from 19 intervention trials suggests that oral supplementation with nonpathogenic micro-organisms (probiotics) during late pregnancy and lactation may reduce risk of eczema (Risk Ratio [RR] 0.78; 95% CI 0.68-0.90; I2 = 61%; Absolute Risk Reduction 44 cases per 1,000; 95% CI 20-64), and 6 trials suggest that fish oil supplementation during pregnancy and lactation may reduce risk of allergic sensitisation to egg (RR 0.69, 95% CI 0.53-0.90; I2 = 15%; Absolute Risk Reduction 31 cases per 1,000; 95% CI 10-47). GRADE certainty of these findings was moderate. We found weaker support for the hypotheses that breastfeeding promotion reduces risk of eczema during infancy (1 intervention trial), that longer exclusive breastfeeding is associated with reduced type 1 diabetes mellitus (28 observational studies), and that probiotics reduce risk of allergic sensitisation to cow's milk (9 intervention trials), where GRADE certainty of findings was low. We did not find that other dietary exposures-including prebiotic supplements, maternal allergenic food avoidance, and vitamin, mineral, fruit, and vegetable intake-influence risk of allergic or autoimmune disease. For many dietary exposures, data were inconclusive or inconsistent, such that we were unable to exclude the possibility of important beneficial or harmful effects. In this comprehensive systematic review, we were not able to include more recent observational studies or verify data via direct contact with authors, and we did not evaluate measures of food diversity during infancy. CONCLUSIONS: Our findings support a relationship between maternal diet and risk of immune-mediated diseases in the child. Maternal probiotic and fish oil supplementation may reduce risk of eczema and allergic sensitisation to food, respectively.


Assuntos
Doenças Autoimunes/etiologia , Dieta , Hipersensibilidade/etiologia , Fenômenos Fisiológicos da Nutrição do Lactente , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/imunologia , Doenças Autoimunes/epidemiologia , Feminino , Humanos , Hipersensibilidade/epidemiologia , Lactente , Recém-Nascido , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Fatores de Risco
13.
Br J Cancer ; 119(10): 1288-1296, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30353050

RESUMO

BACKGROUND: Cancer prognostic biomarkers have shown disappointing clinical applicability. The objective of this study was to classify and estimate how study results are overinterpreted and misreported in prognostic factor studies in oncology. METHODS: This systematic review focused on 17 oncology journals with an impact factor above 7. PubMed was searched for primary clinical studies published in 2015, evaluating prognostic factors. We developed a classification system, focusing on three domains: misleading reporting (selective, incomplete reporting, misreporting), misleading interpretation (unreliable statistical analysis, spin) and misleading extrapolation of the results (claiming irrelevant clinical applicability, ignoring uncertainty). RESULTS: Our search identified 10,844 articles. The 98 studies included investigated a median of two prognostic factors (Q1-Q3, 1-7). The prognostic factors' effects were selectively and incompletely reported in 35/98 and 24/98 full texts, respectively. Twenty-nine articles used linguistic spin in the form of strong statements. Linguistic spin rejecting non-significant results was found in 34 full-text results and 15 abstract results sections. One in five articles had discussion and/or abstract conclusions that were inconsistent with the study findings. Sixteen reports had discrepancies between their full-text and abstract conclusions. CONCLUSIONS: Our study provides evidence of frequent overinterpretation of findings of prognostic factor assessment in high-impact medical oncology journals.


Assuntos
Biomarcadores Tumorais/metabolismo , Oncologia , Neoplasias/metabolismo , Humanos , Neoplasias/patologia , Prognóstico
14.
Cochrane Database Syst Rev ; 3: CD011872, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547689

RESUMO

BACKGROUND: In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. OBJECTIVES: To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (Feburary 2018). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. SELECTION CRITERIA: Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. MAIN RESULTS: We included four trials with a total of 924 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.02, 95% CI 0.77 to 1.35, I² = 0%; four RCTs; N = 924), live birth alone (OR 0.99, 95% CI 0.69 to 1.44, I² = 0%; three RCTs; N = 597), or miscarriage (OR 1.18, 95% CI 0.77 to 1.82; I² = 0%; three RCTs; N = 869). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.90, 95% CI 0.66 to 1.25, I² = 0%; two RCTs; N = 744). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.11, 95% CI 0.85 to 1.45; I²= 44%; four trials; N = 924) or multiple pregnancy (OR 1.50, 95% CI 0.70 to 3.19; I² = 0%; two RCTs, N = 180). Rates of cycle cancellation were higher in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744, low quality evidence). There was very low-quality evidence of little or no difference between groups in rates of ectopic pregnancy rates (OR 3.00, 95% CI 0.12 to 74.07; one RCT; N = 417), and foetal abnormality (no events; one RCT; N = 125). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.03, 95% CI 0.76 to 1.38; I² = 40%; two RCTs; N = 744).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. AUTHORS' CONCLUSIONS: According to current trials in women undergoing ART, there is no evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, miscarriage, multiple pregnancy, ectopic pregnancy or foetal abnormalities. The existing evidence varied from very low to low-quality. Data on other adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.


Assuntos
Aborto Espontâneo/epidemiologia , Nascido Vivo/epidemiologia , Metabolômica/métodos , Resultado da Gravidez , Taxa de Gravidez , Gravidez Múltipla/estatística & dados numéricos , Técnicas de Reprodução Assistida , Adulto , Endométrio/fisiologia , Feminino , Humanos , Oócitos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade
15.
Cochrane Database Syst Rev ; 9: CD012779, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30221749

RESUMO

BACKGROUND: People with thrombocytopenia often require a surgical procedure. A low platelet count is a relative contraindication to surgery due to the risk of bleeding. Platelet transfusions are used in clinical practice to prevent and treat bleeding in people with thrombocytopenia. Current practice in many countries is to correct thrombocytopenia with platelet transfusions prior to surgery. Alternatives to platelet transfusion are also used prior surgery. OBJECTIVES: To determine the clinical effectiveness and safety of prophylactic platelet transfusions prior to surgery for people with a low platelet count. SEARCH METHODS: We searched the following major data bases: Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), PubMed (e-publications only), Ovid MEDLINE, Ovid Embase, the Transfusion Evidence Library and ongoing trial databases to 11 December 2017. SELECTION CRITERIA: We included all randomised controlled trials (RCTs), as well as non-RCTs and controlled before-and-after studies (CBAs), that met Cochrane EPOC (Effective Practice and Organisation of Care) criteria, that involved the transfusion of platelets prior to surgery (any dose, at any time, single or multiple) in people with low platelet counts. We excluded studies on people with a low platelet count who were actively bleeding. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane for data collection. We were only able to combine data for two outcomes and we presented the rest of the findings in a narrative form. MAIN RESULTS: We identified five RCTs, all conducted in adults; there were no eligible non-randomised studies. Three completed trials enrolled 180 adults and two ongoing trials aim to include 627 participants. The completed trials were conducted between 2005 and 2009. The two ongoing trials are scheduled to complete recruitment by October 2019. One trial compared prophylactic platelet transfusions to no transfusion in people with thrombocytopenia in an intensive care unit (ICU). Two small trials, 108 participants, compared prophylactic platelet transfusions to other alternative treatments in people with liver disease. One trial compared desmopressin to fresh frozen plasma or one unit of platelet transfusion or both prior to surgery. The second trial compared platelet transfusion prior to surgery with two types of thrombopoietin mimetics: romiplostim and eltrombopag. None of the included trials were free from methodological bias. No included trials compared different platelet count thresholds for administering a prophylactic platelet transfusion prior to surgery. None of the included trials reported on all the review outcomes and the overall quality per reported outcome was very low.None of the three completed trials reported: all-cause mortality at 90 days post surgery; mortality secondary to bleeding, thromboembolism or infection; number of red cell or platelet transfusions per participant; length of hospital stay; or quality of life.None of the trials included children or people who needed major surgery or emergency surgical procedures.Platelet transfusion versus no platelet transfusion (1 trial, 72 participants)We were very uncertain whether giving a platelet transfusion prior to surgery had any effect on all-cause mortality within 30 days (1 trial, 72 participants; risk ratio (RR) 0.78, 95% confidence interval (CI) 0.41 to 1.45; very-low quality evidence). We were very uncertain whether giving a platelet transfusion prior to surgery had any effect on the risk of major (1 trial, 64 participants; RR 1.60, 95% CI 0.29 to 8.92; very low-quality evidence), or minor bleeding (1 trial, 64 participants; RR 1.29, 95% CI 0.90 to 1.85; very-low quality evidence). No serious adverse events occurred in either study arm (1 trial, 72 participants, very low-quality evidence).Platelet transfusion versus alternative to platelet transfusion (2 trials, 108 participants)We were very uncertain whether giving a platelet transfusion prior to surgery compared to an alternative has any effect on the risk of major (2 trials, 108 participants; no events; very low-quality evidence), or minor bleeding (desmopressin: 1 trial, 36 participants; RR 0.89, 95% CI 0.06 to 13.23; very-low quality evidence: thrombopoietin mimetics: 1 trial, 65 participants; no events; very-low quality evidence). We were very uncertain whether there was a difference in transfusion-related adverse effects between the platelet transfused group and the alternative treatment group (desmopressin: 1 trial, 36 participants; RR 2.70, 95% CI 0.12 to 62.17; very-low quality evidence). AUTHORS' CONCLUSIONS: Findings of this review were based on three small trials involving minor surgery in adults with thrombocytopenia. We found insufficient evidence to recommend the administration of preprocedure prophylactic platelet transfusions in this situation with a lack of evidence that transfusion resulted in a reduction in postoperative bleeding or all-cause mortality. The small number of trials meeting the inclusion criteria and the limitation in reported outcomes across the trials precluded meta-analysis for most outcomes. Further adequately powered trials, in people of all ages, of prophylactic platelet transfusions compared with no transfusion, other alternative treatments, and considering different platelet thresholds prior to planned and emergency surgical procedures are required. Future trials should include major surgery and report on bleeding, adverse effects, mortality (as a long-term outcome) after surgery, duration of hospital stay and quality of life measures.


Assuntos
Transfusão de Plaquetas/métodos , Hemorragia Pós-Operatória/prevenção & controle , Trombocitopenia/terapia , Adulto , Benzoatos/uso terapêutico , Desamino Arginina Vasopressina/uso terapêutico , Hemostáticos/uso terapêutico , Humanos , Hidrazinas/uso terapêutico , Plasma , Cuidados Pós-Operatórios/métodos , Pirazóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Fc/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Trombocitopenia/complicações , Trombopoetina/uso terapêutico
16.
Cochrane Database Syst Rev ; 12: CD010801, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578732

RESUMO

BACKGROUND: Red blood cell (RBC) transfusion is a common treatment for anaemia in many conditions. The safety and efficacy of transfusing RBC units that have been stored for different durations before a transfusion is a current concern. The duration of storage for a RBC unit can be up to 42 days. If evidence from randomised controlled trials (RCT) were to indicate that clinical outcomes are affected by storage duration, the implications for inventory management and clinical practice would be significant. OBJECTIVES: To assess the effects of using red blood cells (RBCs) stored for a shorter versus a longer duration, or versus RBCs stored for standard practice duration, in people requiring a RBC transfusion. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, PubMed (for epublications), LILACS, Transfusion Evidence Library, Web of Science CPCI-S and four international clinical trial registries on 20 November 2017. SELECTION CRITERIA: We included RCTs that compared transfusion of RBCs of shorter versus longer storage duration, or versus standard practice storage duration. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. MAIN RESULTS: We included 22 trials (42,835 participants) in this review.The GRADE quality of evidence ranged from very low to moderate for our primary outcome of in-hospital and short-term mortality reported at different time points.Transfusion of RBCs of shorter versus longer storage duration Eleven trials (2249 participants) compared transfusion of RBCs of shorter versus longer storage duration. Two trials enrolled low birth weight neonates, two enrolled children with severe anaemia secondary to malaria or sickle cell disease, and eight enrolled adults across a range of clinical settings (intensive care, cardiac surgery, major elective surgery, hospitalised in-patients, haematology outpatients). We judged only two trials to be at low risk of bias across all domains; most trials had an unclear risk for multiple domains.Transfusion of RBCs of shorter versus longer storage duration probably leads to little or no difference in mortality at seven-day follow-up (risk ratio (RR) 1.42, 95% confidence interval (CI) 0.66 to 3.06; 1 trial, 3098 participants; moderate quality evidence) or 30-day follow-up (RR 0.85, 95%CI 0.50 to 1.45; 2 trials, 1121 participants; moderate quality evidence) in adults undergoing major elective cardiac or non-cardiac surgery.For neonates, no studies reported on the primary outcome of in-hospital or short-term mortality. At 40 weeks gestational age, the effect of RBCs of shorter versus longer storage duration on the risk of death was uncertain, as the quality of evidence is very low (RR 0.90, 95% CI 0.41 to 1.85; 1 trial, 52 participants).The effect of RBCs of shorter versus longer storage duration on the risk of death in children with severe anaemia was also uncertain within 24 hours of transfusion (RR 1.50, 95% CI 0.43 to 5.25; 2 trials, 364 participants; very low quality evidence), or at 30-day follow-up (RR 1.40, 95% CI 0.45 to 4.31; 1 trial, 290 participants; low quality evidence).Only one trial, in children with severe anaemia (290 participants), reported adverse transfusion reactions. Only one child in each arm experienced an adverse reaction within 24 hours of transfusion.Transfusion of RBCs of shorter versus standard practice storage duration Eleven trials (40,588 participants) compared transfusion of RBCs of shorter versus standard practice storage duration. Three trials enrolled critically ill term neonates; two of these enrolled very low birth weight neonates. There were no trials in children. Eight trials enrolled critically ill and non-critically ill adults, with most being hospitalised. We judged four trials to be at low risk of bias across all domains with the others having an unclear risk of bias across multiple domains.Transfusion of RBCs of shorter versus standard practice storage duration probably leads to little or no difference in adult in-hospital mortality (RR 1.05, 95% CI 0.97 to 1.14; 4 trials, 25,704 participants; moderate quality evidence), ICU mortality (RR 1.06, 95% CI 0.98 to 1.15; 3 trials, 13,066 participants; moderate quality evidence), or 30-day mortality (RR 1.04, 95% CI 0.96 to 1.13; 4 trials, 7510 participants;moderate quality evidence).Two of the three trials that enrolled neonates reported that there were no adverse transfusion reactions. One trial reported an isolated case of cytomegalovirus infection in participants assigned to the standard practice storage duration group. Two trials in critically ill adults reported data on transfusion reactions: one observed no difference in acute transfusion reactions between arms (RR 0.67, 95% CI 0.19 to 2.36, 2413 participants), but the other observed more febrile nonhaemolytic reactions in the shorter storage duration arm (RR 1.48, 95% CI 1.13 to 1.95, 4919 participants).Trial sequential analysis showed that we may now have sufficient evidence to reject a 5% relative risk increase or decrease of death within 30 days when transfusing RBCs of shorter versus longer storage duration across all patient groups. AUTHORS' CONCLUSIONS: The effect of storage duration on clinically important outcomes has now been investigated in large, high quality RCTs, predominantly in adults. There appears to be no evidence of an effect on mortality that is related to length of storage of transfused RBCs. However, the quality of evidence in neonates and children is low. The current practice in blood banks of using the oldest available RBCs can be continued safely. Additional RCTs are not required, but research using alternative study designs, should focus on particular subgroups (e.g. those requiring multiple RBC units) and on factors affecting RBC quality.


Assuntos
Anemia/terapia , Preservação de Sangue , Transfusão de Eritrócitos , Eritrócitos , Adulto , Anemia/etiologia , Anemia/mortalidade , Anemia Falciforme/complicações , Preservação de Sangue/efeitos adversos , Preservação de Sangue/mortalidade , Segurança do Sangue , Criança , Transfusão de Eritrócitos/efeitos adversos , Transfusão de Eritrócitos/mortalidade , Guias como Assunto , Mortalidade Hospitalar , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Malária/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Fatores de Tempo
17.
Cochrane Database Syst Rev ; 5: CD012349, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737522

RESUMO

BACKGROUND: Regularly transfused people with sickle cell disease (SCD) and people with thalassaemia (who are transfusion-dependent or non-transfusion-dependent) are at risk of iron overload. Iron overload can lead to iron toxicity in vulnerable organs such as the heart, liver and endocrine glands; which can be prevented and treated with iron chelating agents. The intensive demands and uncomfortable side effects of therapy can have a negative impact on daily activities and well-being, which may affect adherence. OBJECTIVES: To identify and assess the effectiveness of interventions (psychological and psychosocial, educational, medication interventions, or multi-component interventions) to improve adherence to iron chelation therapy in people with SCD or thalassaemia. SEARCH METHODS: We searched CENTRAL (the Cochrane Library), MEDLINE, Embase, CINAHL, PsycINFO, Psychology and Behavioral Sciences Collection, Web of Science Science & Social Sciences Conference Proceedings Indexes and ongoing trial databases (01 February 2017). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register (12 December 2017). SELECTION CRITERIA: For trials comparing medications or medication changes, only randomised controlled trials (RCTs) were eligible for inclusion.For studies including psychological and psychosocial interventions, educational Interventions, or multi-component interventions, non-RCTs, controlled before-after studies, and interrupted time series studies with adherence as a primary outcome were also eligible for inclusion. DATA COLLECTION AND ANALYSIS: Three authors independently assessed trial eligibility, risk of bias and extracted data. The quality of the evidence was assessed using GRADE. MAIN RESULTS: We included 16 RCTs (1525 participants) published between 1997 and 2017. Most participants had ß-thalassaemia major; 195 had SCD and 88 had ß-thalassaemia intermedia. Mean age ranged from 11 to 41 years. One trial was of medication management and 15 RCTs were of medication interventions. Medications assessed were subcutaneous deferoxamine, and two oral-chelating agents, deferiprone and deferasirox.We rated the quality of evidence as low to very low across all outcomes identified in this review.Three trials measured quality of life (QoL) with validated instruments, but provided no analysable data and reported no difference in QoL.Deferiprone versus deferoxamineWe are uncertain whether deferiprone increases adherence to iron chelation therapy (four trials, very low-quality evidence). Results could not be combined due to considerable heterogeneity (participants' age and different medication regimens). Medication adherence was high (deferiprone (85% to 94.9%); deferoxamine (71.6% to 93%)).We are uncertain whether deferiprone increases the risk of agranulocytosis, risk ratio (RR) 7.88 (99% confidence interval (CI) 0.18 to 352.39); or has any effect on all-cause mortality, RR 0.44 (95% CI 0.12 to 1.63) (one trial; 88 participants; very low-quality evidence).Deferasirox versus deferoxamineWe are uncertain whether deferasirox increases adherence to iron chelation therapy, mean difference (MD) -1.40 (95% CI -3.66 to 0.86) (one trial; 197 participants; very-low quality evidence). Medication adherence was high (deferasirox (99%); deferoxamine (100%)). We are uncertain whether deferasirox decreases the risk of thalassaemia-related serious adverse events (SAEs), RR 0.95 (95% CI 0.41 to 2.17); or all-cause mortality, RR 0.96 (95% CI 0.06 to 15.06) (two trials; 240 participants; very low-quality evidence).We are uncertain whether deferasirox decreases the risk of SCD-related pain crises, RR 1.05 (95% CI 0.68 to 1.62); or other SCD-related SAEs, RR 1.08 (95% CI 0.77 to 1.51) (one trial; 195 participants; very low-quality evidence).Deferasirox film-coated tablet (FCT) versus deferasirox dispersible tablet (DT)Deferasirox FCT may make little or no difference to adherence, RR 1.10 (95% CI 0.99 to 1.22) (one trial; 173 participants; low-quality evidence). Medication adherence was high (FCT (92.9%); DT (85.3%)).We are uncertain if deferasirox FCT increases the incidence of SAEs, RR 1.22 (95% CI 0.62 to 2.37); or all-cause mortality, RR 2.97 (95% CI 0.12 to 71.81) (one trial; 173 participants; very low-quality evidence).Deferiprone and deferoxamine combined versus deferiprone alone We are uncertain if deferiprone and deferoxamine combined increases adherence to iron chelation therapy (very low-quality evidence). Medication adherence was high (deferiprone 92.7% (range 37% to 100%) to 93.6% (range 56% to 100%); deferoxamine 70.6% (range 25% to 100%).Combination therapy may make little or no difference to the risk of SAEs, RR 0.15 (95% CI 0.01 to 2.81) (one trial; 213 participants; low-quality evidence).We are uncertain if combination therapy decreases all-cause mortality, RR 0.77 (95% CI 0.18 to 3.35) (two trials; 237 participants; very low-quality evidence).Deferiprone and deferoxamine combined versus deferoxamine aloneDeferiprone and deferoxamine combined may have little or no effect on adherence to iron chelation therapy (four trials; 216 participants; low-quality evidence). Medication adherence was high (deferoxamine 91.4% to 96.1%; deferiprone: 82.4%)Deferiprone and deferoxamine combined, may have little or no difference in SAEs or mortality (low-quality evidence). No SAEs occurred in three trials and were not reported in one trial. No deaths occurred in two trials and were not reported in two trials.Deferiprone and deferoxamine combined versus deferiprone and deferasirox combinedDeferiprone and deferasirox combined may improve adherence to iron chelation therapy, RR 0.84 (95% CI 0.72 to 0.99) (one trial; 96 participants; low-quality evidence). Medication adherence was high (deferiprone and deferoxamine: 80%; deferiprone and deferasirox: 95%).We are uncertain if deferiprone and deferasirox decreases the incidence of SAEs, RR 1.00 (95% CI 0.06 to 15.53) (one trial; 96 participants; very low-quality evidence).There were no deaths in the trial (low-quality evidence).Medication management versus standard careWe are uncertain if medication management improves health-related QoL (one trial; 48 participants; very low-quality evidence). Adherence was only measured in one arm of the trial. AUTHORS' CONCLUSIONS: The medication comparisons included in this review had higher than average adherence rates not accounted for by differences in medication administration or side effects.Participants may have been selected based on higher adherence to trial medications at baseline. Also, within the clinical trial context, there is increased attention and involvement of clinicians, thus high adherence rates may be an artefact of trial participation.Real-world, pragmatic trials in community and clinic settings are needed that examine both confirmed or unconfirmed adherence strategies that may increase adherence to iron chelation therapy.Due to lack of evidence this review cannot comment on intervention strategies for different age groups.


Assuntos
Anemia Falciforme/terapia , Terapia por Quelação , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/prevenção & controle , Cooperação do Paciente , Talassemia beta/prevenção & controle , Adolescente , Adulto , Anemia Falciforme/mortalidade , Benzoatos/uso terapêutico , Criança , Deferasirox , Deferiprona , Desferroxamina/uso terapêutico , Humanos , Sobrecarga de Ferro/etiologia , Piridonas/uso terapêutico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Triazóis/uso terapêutico , Talassemia beta/mortalidade
18.
Acta Orthop ; 89(1): 71-76, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29065753

RESUMO

Background and purpose - Immediate postoperative pain management offered in knee arthroplasty is suboptimal in up to one-third of patients resulting in high opiate consumption and delayed discharge. In this meta-analysis we investigate the analgesic effect and safety of perioperative adjuvant corticosteroids in knee arthroplasty. Methods - Databases Medline, Embase, and Central were searched for randomized studies comparing the analgesic effect of adjuvant perioperative corticosteroids in knee arthroplasty. Our primary outcome was pain score at 24 hours postoperatively. Secondary outcomes included pain at 12, 48, and 72 hours, opiate consumption, postoperative nausea and vomiting, infection, and discharge time. Systemic (intravenous) and local (intra-articular) corticosteroids were analyzed separately. Results - 14 randomized controlled trials (1,396 knees) were included. Mean corticosteroid dosages were predominantly 50-75mg oral prednisolone equivalents for both systemic and local routes. Systemic corticosteroids demonstrated statistically significant and clinically modest reductions in pain at 12 hours by -1.1 points (95%CI -2.2 to 0.02), 24 hours by -1.3 points (CI -2.3 to -0.26) and 48 hours by -0.4 points (CI -0.67 to -0.04). Local corticosteroids did not reduce pain. Opiate consumption, postoperative nausea and vomiting, infection, or time till discharge were similar between groups. Interpretation - Corticosteroids modestly reduce pain postoperatively at 12 and 24 hours when used systemically without any increase in associated risks for dosages between 50 and 75 mg oral prednisolone equivalents.


Assuntos
Corticosteroides/uso terapêutico , Analgésicos/uso terapêutico , Artroplastia do Joelho , Dor Pós-Operatória/tratamento farmacológico , Corticosteroides/administração & dosagem , Analgésicos/administração & dosagem , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Humanos , Assistência Perioperatória/métodos , Prednisolona/administração & dosagem , Prednisolona/uso terapêutico
19.
Artigo em Inglês | MEDLINE | ID: mdl-29151812

RESUMO

This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To determine the clinical effectiveness and safety of prophylactic platelet transfusions prior to surgery for people with a low platelet count or platelet dysfunction (inherited or acquired).

20.
Cochrane Database Syst Rev ; 1: CD003146, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094851

RESUMO

BACKROUND: Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Stroke affects around 10% of children with sickle cell anaemia (HbSS). Chronic blood transfusions may reduce the risk of vaso-occlusion and stroke by diluting the proportion of sickled cells in the circulation.This is an update of a Cochrane Review first published in 2002, and last updated in 2013. OBJECTIVES: To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease for primary and secondary stroke prevention (excluding silent cerebral infarcts). SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 04 April 2016.We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register: 25 April 2016. SELECTION CRITERIA: Randomised controlled trials comparing red blood cell transfusions as prophylaxis for stroke in people with sickle cell disease to alternative or standard treatment. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS: We included five trials (660 participants) published between 1998 and 2016. Four of these trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of sickle cell disease.Three trials compared regular red cell transfusions to standard care in primary prevention of stroke: two in children with no previous long-term transfusions; and one in children and adolescents on long-term transfusion.Two trials compared the drug hydroxyurea (hydroxycarbamide) and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children); and one in secondary prevention (children and adolescents).The quality of the evidence was very low to moderate across different outcomes according to GRADE methodology. This was due to the trials being at a high risk of bias due to lack of blinding, indirectness and imprecise outcome estimates. Red cell transfusions versus standard care Children with no previous long-term transfusionsLong-term transfusions probably reduce the incidence of clinical stroke in children with a higher risk of stroke (abnormal transcranial doppler velocities or previous history of silent cerebral infarct), risk ratio 0.12 (95% confidence interval 0.03 to 0.49) (two trials, 326 participants), moderate quality evidence.Long-term transfusions may: reduce the incidence of other sickle cell disease-related complications (acute chest syndrome, risk ratio 0.24 (95% confidence interval 0.12 to 0.48)) (two trials, 326 participants); increase quality of life (difference estimate -0.54, 95% confidence interval -0.92 to -0.17) (one trial, 166 participants); but make little or no difference to IQ scores (least square mean: 1.7, standard error 95% confidence interval -1.1 to 4.4) (one trial, 166 participants), low quality evidence.We are very uncertain whether long-term transfusions: reduce the risk of transient ischaemic attacks, Peto odds ratio 0.13 (95% confidence interval 0.01 to 2.11) (two trials, 323 participants); have any effect on all-cause mortality, no deaths reported (two trials, 326 participants); or increase the risk of alloimmunisation, risk ratio 3.16 (95% confidence interval 0.18 to 57.17) (one trial, 121 participants), very low quality evidence. Children and adolescents with previous long-term transfusions (one trial, 79 participants)We are very uncertain whether continuing long-term transfusions reduces the incidence of: stroke, risk ratio 0.22 (95% confidence interval 0.01 to 4.35); or all-cause mortality, Peto odds ratio 8.00 (95% confidence interval 0.16 to 404.12), very low quality evidence.Several review outcomes were only reported in one trial arm (sickle cell disease-related complications, alloimmunisation, transient ischaemic attacks).The trial did not report neurological impairment, or quality of life. Hydroxyurea and phlebotomy versus red cell transfusions and chelationNeither trial reported on neurological impairment, alloimmunisation, or quality of life. Primary prevention, children (one trial, 121 participants)Switching to hydroxyurea and phlebotomy may have little or no effect on liver iron concentrations, mean difference -1.80 mg Fe/g dry-weight liver (95% confidence interval -5.16 to 1.56), low quality evidence.We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: risk of stroke (no strokes); all-cause mortality (no deaths); transient ischaemic attacks, risk ratio 1.02 (95% confidence interval 0.21 to 4.84); or other sickle cell disease-related complications (acute chest syndrome, risk ratio 2.03 (95% confidence interval 0.39 to 10.69)), very low quality evidence. Secondary prevention, children and adolescents (one trial, 133 participants)Switching to hydroxyurea and phlebotomy may: increase the risk of sickle cell disease-related serious adverse events, risk ratio 3.10 (95% confidence interval 1.42 to 6.75); but have little or no effect on median liver iron concentrations (hydroxyurea, 17.3 mg Fe/g dry-weight liver (interquartile range 10.0 to 30.6)); transfusion 17.3 mg Fe/g dry-weight liver (interquartile range 8.8 to 30.7), low quality evidence.We are very uncertain whether switching to hydroxyurea and phlebotomy: increases the risk of stroke, risk ratio 14.78 (95% confidence interval 0.86 to 253.66); or has any effect on all-cause mortality, Peto odds ratio 0.98 (95% confidence interval 0.06 to 15.92); or transient ischaemic attacks, risk ratio 0.66 (95% confidence interval 0.25 to 1.74), very low quality evidence. AUTHORS' CONCLUSIONS: There is no evidence for managing adults, or children who do not have HbSS sickle cell disease.In children who are at higher risk of stroke and have not had previous long-term transfusions, there is moderate quality evidence that long-term red cell transfusions reduce the risk of stroke, and low quality evidence they also reduce the risk of other sickle cell disease-related complications.In primary and secondary prevention of stroke there is low quality evidence that switching to hydroxyurea with phlebotomy has little or no effect on the liver iron concentration.In secondary prevention of stroke there is low-quality evidence that switching to hydroxyurea with phlebotomy increases the risk of sickle cell disease-related events.All other evidence in this review is of very low quality.


Assuntos
Anemia Falciforme/complicações , Transfusão de Eritrócitos , Prevenção Primária , Prevenção Secundária , Acidente Vascular Cerebral/prevenção & controle , Adolescente , Anemia Falciforme/sangue , Antidrepanocíticos/efeitos adversos , Antidrepanocíticos/uso terapêutico , Transfusão de Sangue , Criança , Pré-Escolar , Término Precoce de Ensaios Clínicos , Transfusão de Eritrócitos/efeitos adversos , Hemoglobina Falciforme , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Quelantes de Ferro/uso terapêutico , Flebotomia/efeitos adversos , Acidente Vascular Cerebral/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA