Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(5): 1160-74, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855951

RESUMO

Developmental signaling is remarkably robust to environmental variation, including temperature. For example, in ectothermic animals such as Drosophila, Notch signaling is maintained within functional limits across a wide temperature range. We combine experimental and computational approaches to show that temperature compensation of Notch signaling is achieved by an unexpected variety of endocytic-dependent routes to Notch activation which, when superimposed on ligand-induced activation, act as a robustness module. Thermal compensation arises through an altered balance of fluxes within competing trafficking routes, coupled with temperature-dependent ubiquitination of Notch. This flexible ensemble of trafficking routes supports Notch signaling at low temperature but can be switched to restrain Notch signaling at high temperature and thus compensates for the inherent temperature sensitivity of ligand-induced activation. The outcome is to extend the physiological range over which normal development can occur. Similar mechanisms may provide thermal robustness for other developmental signals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Endocitose , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Regulação para Baixo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Transdução de Sinais , Temperatura
2.
J Theor Biol ; 383: 28-43, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26215686

RESUMO

The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields.


Assuntos
Evolução Biológica , Modelos Genéticos , Algoritmos , Animais , Genética Populacional , Dinâmica Populacional
3.
Front Microbiol ; 13: 916035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875522

RESUMO

The recalcitrance of biofilms to antimicrobials is a multi-factorial phenomenon, including genetic, physical, and physiological changes. Individually, they often cannot account for biofilm recalcitrance. However, their combination can increase the minimal inhibitory concentration of antibiotics needed to kill bacterial cells by three orders of magnitude, explaining bacterial survival under otherwise lethal drug treatment. The relative contributions of these factors depend on the specific antibiotics, bacterial strain, as well as environmental and growth conditions. An emerging population genetic property-increased biofilm genetic diversity-further enhances biofilm recalcitrance. Here, we develop a polygenic model of biofilm recalcitrance accounting for multiple phenotypic mechanisms proposed to explain biofilm recalcitrance. The model can be used to generate predictions about the emergence of resistance-its timing and population genetic consequences. We use the model to simulate various treatments and experimental setups. Our simulations predict that the evolution of resistance is impaired in biofilms at low antimicrobial concentrations while it is facilitated at higher concentrations. In scenarios that allow bacteria exchange between planktonic and biofilm compartments, the evolution of resistance is further facilitated compared to scenarios without exchange. We compare these predictions to published experimental observations.

4.
Mol Ecol Resour ; 22(8): 2941-2955, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35765749

RESUMO

Spatially explicit population genetic models have long been developed, yet have rarely been used to test hypotheses about the spatial distribution of genetic diversity or the genetic divergence between populations. Here, we use spatially explicit coalescence simulations to explore the properties of the island and the two-dimensional stepping stone models under a wide range of scenarios with spatio-temporal variation in deme size. We avoid the simulation of genetic data, using the fact that under the studied models, summary statistics of genetic diversity and divergence can be approximated from coalescence times. We perform the simulations using gridCoal, a flexible spatial wrapper for the software msprime (Kelleher et al., 2016, Theoretical Population Biology, 95, 13) developed herein. In gridCoal, deme sizes can change arbitrarily across space and time, as well as migration rates between individual demes. We identify different factors that can cause a deviation from theoretical expectations, such as the simulation time in comparison to the effective deme size and the spatio-temporal autocorrelation across the grid. Our results highlight that FST , a measure of the strength of population structure, principally depends on recent demography, which makes it robust to temporal variation in deme size. In contrast, the amount of genetic diversity is dependent on the distant past when Ne is large, therefore longer run times are needed to estimate Ne than FST . Finally, we illustrate the use of gridCoal on a real-world example, the range expansion of silver fir (Abies alba Mill.) since the last glacial maximum, using different degrees of spatio-temporal variation in deme size.


Assuntos
Genética Populacional , Modelos Genéticos , Clorofluorcarbonetos , Éteres , Variação Genética , Densidade Demográfica , Dinâmica Populacional
5.
Trends Microbiol ; 30(9): 841-852, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35337697

RESUMO

Biofilms are communities of bacteria forming high-density sessile colonies. Such a lifestyle comes associated with costs and benefits: while the growth rate of biofilms is often lower than that of their free-living counterparts, this cost is readily repaid once the colony is subjected to antibiotics. Biofilms can grow in antibiotic concentrations a thousand times higher than planktonic bacteria. While numerous mechanisms have been proposed to explain biofilm recalcitrance towards antibiotics, little is yet known about their effect on the evolution of resistance. We synthesize the current understanding of biofilm recalcitrance from a pharmacodynamic and a population genetics perspective. Using the pharmacodynamic framework, we discuss the effects of various mechanisms and show that biofilms can either promote or impede resistance evolution.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Bactérias , Resistência Microbiana a Medicamentos/genética , Genética Populacional , Testes de Sensibilidade Microbiana , Plâncton
6.
Ecol Evol ; 9(17): 9597-9608, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534678

RESUMO

The green-beard effect is one proposed mechanism predicted to underpin the evolution of altruistic behavior. It relies on the recognition and the selective help of altruists to each other in order to promote and sustain altruistic behavior. However, this mechanism has often been dismissed as unlikely or uncommon, as it is assumed that both the signaling trait and altruistic trait need to be encoded by the same gene or through tightly linked genes. Here, we use models of indirect genetic effects (IGEs) to find the minimum correlation between the signaling and altruistic trait required for the evolution of the latter. We show that this correlation threshold depends on the strength of the interaction (influence of the green beard on the expression of the altruistic trait), as well as the costs and benefits of the altruistic behavior. We further show that this correlation does not necessarily have to be high and support our analytical results by simulations.

7.
Evolution ; 73(7): 1356-1374, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206653

RESUMO

The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation-limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on adaptation. Our results rely on an "adaptive-walk" approximation and use mathematical methods from evolutionary computation theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results with simulations.


Assuntos
Adaptação Biológica , Evolução Biológica , Seleção Genética , Meio Ambiente , Modelos Genéticos , Mutação
8.
Algorithmica ; 80(5): 1604-1633, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996504

RESUMO

Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their length, representing the Hamming path between the two optima and their depth, the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The ( 1 + 1 ) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the ( 1 + 1 ) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys.

9.
Genetics ; 205(2): 803-825, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27881471

RESUMO

Adaptation depends critically on the effects of new mutations and their dependency on the genetic background in which they occur. These two factors can be summarized by the fitness landscape. However, it would require testing all mutations in all backgrounds, making the definition and analysis of fitness landscapes mostly inaccessible. Instead of postulating a particular fitness landscape, we address this problem by considering general classes of landscapes and calculating an upper limit for the time it takes for a population to reach a fitness peak, circumventing the need to have full knowledge about the fitness landscape. We analyze populations in the weak-mutation regime and characterize the conditions that enable them to quickly reach the fitness peak as a function of the number of sites under selection. We show that for additive landscapes there is a critical selection strength enabling populations to reach high-fitness genotypes, regardless of the distribution of effects. This threshold scales with the number of sites under selection, effectively setting a limit to adaptation, and results from the inevitable increase in deleterious mutational pressure as the population adapts in a space of discrete genotypes. Furthermore, we show that for the class of all unimodal landscapes this condition is sufficient but not necessary for rapid adaptation, as in some highly epistatic landscapes the critical strength does not depend on the number of sites under selection; effectively removing this barrier to adaptation.


Assuntos
Adaptação Fisiológica/genética , Aptidão Genética , Modelos Genéticos , Seleção Genética
10.
PLoS One ; 10(5): e0126907, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993124

RESUMO

BACKGROUND: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. RESULTS: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.


Assuntos
Estudos de Associação Genética , Relações Interpessoais , Comportamento Social , Algoritmos , Humanos , Modelos Genéticos , Fenótipo , Característica Quantitativa Herdável
11.
Evol Biol ; 41: 123-133, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578587

RESUMO

Social selection and indirect genetic effects (IGEs) are established concepts in both behavioural ecology and evolutionary genetics. While IGEs describe effects of an individual's genotype on phenotypes of social partners (and may thus affect their fitness indirectly), the concept of social selection assumes that a given phenotype in one individual affects the fitness of other individuals directly. Although different frameworks, both have been used to investigate the evolution of social traits, such as cooperative behaviour. Despite their similarities (both concepts consider interactions among individuals), they differ in the type of interaction. It remains unclear whether the two concepts make the same predictions about evolutionary trajectories or not. To address this question, we investigate four possible scenarios of social interactions and compare the effects of IGEs and social selection for trait evolution in a multi-trait multi-member model. We show that the two mechanisms can yield similar evolutionary outcomes and that both can create selection pressure at the group level. However, the effect of IGEs can be stronger due to the possibility of feedback loops. Finally, we demonstrate that IGEs, but not social selection gradients, may lead to differences in the direction of evolutionary response between genotypes and phenotypes.

12.
PLoS One ; 7(11): e46273, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226195

RESUMO

Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation.


Assuntos
Evolução Biológica , Interação Gene-Ambiente , Genótipo , Modelos Genéticos , Fenótipo , Comportamento Social , Animais , Simulação por Computador , Meio Ambiente , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA