Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853826

RESUMO

Most cancers are diagnosed in persons over the age of sixty, but little is known about how age impacts tumorigenesis. While aging is accompanied by mutation accumulation - widely understood to contribute to cancer risk - it is also associated with numerous other cellular and molecular changes likely to impact tumorigenesis. Moreover, cancer incidence decreases in the oldest part of the population, suggesting that very old age may reduce carcinogenesis. Here we show that aging represses tumor initiation and growth in genetically engineered mouse models of human lung cancer. Moreover, aging dampens the impact of inactivating many, but not all, tumor suppressor genes with the impact of inactivating PTEN, a negative regulator of the PI3K/AKT pathway, weakened to a disproportionate extent. Single-cell transcriptomic analysis revealed that neoplastic cells from tumors in old mice retain many age-related transcriptomic changes, showing that age has an enduring impact that persists through oncogenic transformation. Furthermore, the consequences of PTEN inactivation were strikingly age-dependent, with PTEN deficiency reducing signatures of aging in cancer cells and the tumor microenvironment. Our findings suggest that the relationship between age and lung cancer incidence may reflect an integration of the competing effects of driver mutation accumulation and tumor suppressive effects of aging.

2.
Nat Cell Biol ; 25(1): 159-169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635501

RESUMO

Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transformação Celular Neoplásica/metabolismo , Transdução de Sinais/genética , Neoplasias Pulmonares/genética , Genes ras , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
3.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36995340

RESUMO

Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.


Assuntos
Neoplasias Pulmonares , Macrófagos , Humanos , Macrófagos/metabolismo , Fagocitose/genética , Neoplasias Pulmonares/patologia , Células Mieloides/metabolismo , Estresse Oxidativo , Microambiente Tumoral
4.
Nat Commun ; 13(1): 1090, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228570

RESUMO

LKB1 is among the most frequently altered tumor suppressors in lung adenocarcinoma. Inactivation of Lkb1 accelerates the growth and progression of oncogenic KRAS-driven lung tumors in mouse models. However, the molecular mechanisms by which LKB1 constrains lung tumorigenesis and whether the cancer state that stems from Lkb1 deficiency can be reverted remains unknown. To identify the processes governed by LKB1 in vivo, we generated an allele which enables Lkb1 inactivation at tumor initiation and subsequent Lkb1 restoration in established tumors. Restoration of Lkb1 in oncogenic KRAS-driven lung tumors suppressed proliferation and led to tumor stasis. Lkb1 restoration activated targets of C/EBP transcription factors and drove neoplastic cells from a progenitor-like state to a less proliferative alveolar type II cell-like state. We show that C/EBP transcription factors govern a subset of genes that are induced by LKB1 and depend upon NKX2-1. We also demonstrate that a defining factor of the alveolar type II lineage, C/EBPα, constrains oncogenic KRAS-driven lung tumor growth in vivo. Thus, this key tumor suppressor regulates lineage-specific transcription factors, thereby constraining lung tumor development through enforced differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
5.
Cancer Res ; 82(8): 1589-1602, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35425962

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with lung adenocarcinoma being the most common subtype. Many oncogenes and tumor suppressor genes are altered in this cancer type, and the discovery of oncogene mutations has led to the development of targeted therapies that have improved clinical outcomes. However, a large fraction of lung adenocarcinomas lacks mutations in known oncogenes, and the genesis and treatment of these oncogene-negative tumors remain enigmatic. Here, we perform iterative in vivo functional screens using quantitative autochthonous mouse model systems to uncover the genetic and biochemical changes that enable efficient lung tumor initiation in the absence of oncogene alterations. Generation of hundreds of diverse combinations of tumor suppressor alterations demonstrates that inactivation of suppressors of the RAS and PI3K pathways drives the development of oncogene-negative lung adenocarcinoma. Human genomic data and histology identified RAS/MAPK and PI3K pathway activation as a common feature of an event in oncogene-negative human lung adenocarcinomas. These Onc-negativeRAS/PI3K tumors and related cell lines are vulnerable to pharmacologic inhibition of these signaling axes. These results transform our understanding of this prevalent yet understudied subtype of lung adenocarcinoma. SIGNIFICANCE: To address the large fraction of lung adenocarcinomas lacking mutations in proto-oncogenes for which targeted therapies are unavailable, this work uncovers driver pathways of oncogene-negative lung adenocarcinomas and demonstrates their therapeutic vulnerabilities.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Oncogenes , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Nat Cell Biol ; 23(8): 915-924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341533

RESUMO

Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.


Assuntos
Adenocarcinoma/genética , Cromatina/metabolismo , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas HMGB/metabolismo , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXF/metabolismo
7.
Cancer Discov ; 11(7): 1754-1773, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33608386

RESUMO

Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS-driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Genes Supressores de Tumor , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transformação Celular Neoplásica , Humanos , Neoplasias Pulmonares/patologia
8.
Elife ; 92020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33025906

RESUMO

Cell-cell interactions influence all aspects of development, homeostasis, and disease. In cancer, interactions between cancer cells and stromal cells play a major role in nearly every step of carcinogenesis. Thus, the ability to record cell-cell interactions would facilitate mechanistic delineation of the role of the cancer microenvironment. Here, we describe GFP-based Touching Nexus (G-baToN) which relies upon nanobody-directed fluorescent protein transfer to enable sensitive and specific labeling of cells after cell-cell interactions. G-baToN is a generalizable system that enables physical contact-based labeling between various human and mouse cell types, including endothelial cell-pericyte, neuron-astrocyte, and diverse cancer-stromal cell pairs. A suite of orthogonal baToN tools enables reciprocal cell-cell labeling, interaction-dependent cargo transfer, and the identification of higher order cell-cell interactions across a wide range of cell types. The ability to track physically interacting cells with these simple and sensitive systems will greatly accelerate our understanding of the outputs of cell-cell interactions in cancer as well as across many biological processes.


It takes the coordinated effort of more than 40 trillion cells to build and maintain a human body. This intricate process relies on cells being able to communicate across long distances, but also with their immediate neighbors. Interactions between cells in close contact are key in both health and disease, yet tracing these connections efficiently and accurately remains challenging. The surface of a cell is studded with proteins that interact with the environment, including with the proteins on neighboring cells. Using genetic engineering, it is possible to construct surface proteins that carry a fluorescent tag called green fluorescent protein (or GFP), which could help to track physical interactions between cells. Here, Tang et al. test this idea by developing a new technology named GFP-based Touching Nexus, or G-baToN for short. Sender cells carry a GFP protein tethered to their surface, while receiver cells present a synthetic element that recognizes that GFP. When the cells touch, the sender passes its GFP to the receiver, and these labelled receiver cells become 'green'. Using this system, Tang et al. recorded physical contacts between a variety of human and mouse cells. Interactions involving more than two cells could also be detected by using different colors of fluorescent tags. Furthermore, Tang et al. showed that, alongside GFP, G-baToN could pass molecular cargo such as proteins, DNA, and other chemicals to receiver cells. This new system could help to study interactions among many different cell types. Changes in cell-to-cell contacts are a feature of diverse human diseases, including cancer. Tracking these interactions therefore could unravel new information about how cancer cells interact with their environment.


Assuntos
Comunicação Celular/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Microscopia/métodos , Animais , Linhagem Celular , Técnicas de Cocultura , Proteínas de Fluorescência Verde/química , Humanos , Lentivirus , Camundongos , Transporte Proteico
9.
Cancer Discov ; 9(11): 1590-1605, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350327

RESUMO

The kinase LKB1 is a critical tumor suppressor in sporadic and familial human cancers, yet the mechanisms by which it suppresses tumor growth remain poorly understood. To investigate the tumor-suppressive capacity of four canonical families of LKB1 substrates in vivo, we used CRISPR/Cas9-mediated combinatorial genome editing in a mouse model of oncogenic KRAS-driven lung adenocarcinoma. We demonstrate that members of the SIK family are critical for constraining tumor development. Histologic and gene-expression similarities between LKB1- and SIK-deficient tumors suggest that SIKs and LKB1 operate within the same axis. Furthermore, a gene-expression signature reflecting SIK deficiency is enriched in LKB1-mutant human lung adenocarcinomas and is regulated by LKB1 in human cancer cell lines. Together, these findings reveal a key LKB1-SIK tumor-suppressive axis and underscore the need to redirect efforts to elucidate the mechanisms through which LKB1 mediates tumor suppression. SIGNIFICANCE: Uncovering the effectors of frequently altered tumor suppressor genes is critical for understanding the fundamental driving forces of cancer growth. Our identification of the SIK family of kinases as effectors of LKB1-mediated tumor suppression will refocus future mechanistic studies and may lead to new avenues for genotype-specific therapeutic interventions.This article is highlighted in the In This Issue feature, p. 1469.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular Tumoral , Proliferação de Células , Edição de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA