Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24404-24411, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475268

RESUMO

Meta-optics integrated with light sources has gained significant attention. However, most focused on the efficiency of metasurfaces themselves, rather than the efficiency of integration. To design highly efficient beam deflection, we develop a scheme of homo-metagrating, involving the same material for meta-atoms, substrate, and top layer of the laser, to achieve near-unity power from light-emitting to metasurfaces. We utilize three degrees of freedom: overall add-on phase, parameters of meta-atoms in a period, and lattice arrangement. The overall efficiency of homo-metagratings is higher than that of hetero-metagratings. We believe our approach is capable of being implemented in various ultracompact optic systems.

2.
Opt Express ; 31(1): 469-478, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606981

RESUMO

In this study, we have designed an electrically tunable multi-band terahertz (THz) metamaterial filter based on graphene and multiple-square-loop structures. The structure contains multiple metal square loops, and these loops with different sizes correspond to different THz frequencies, achieving our expected efficacy of a multiband wave filter. Furthermore, by sweeping external voltages, we could change graphene's Fermi levels, and thus the high-sensitivity THz filter's capability from single-band to multi-band filtering can be modulated. We expect that this study of a hybrid THz wave filter would be promising for the development of selecting channels in THz and 6 G communications.

3.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069436

RESUMO

The protective roles of extracellular vesicles derived from human umbilical cord mesenchymal stem cells against oxazolone-induced damage in the immortalized human keratinocyte cell line HaCaT were investigated. The cells were pretreated with or without UCMSC-derived extracellular vesicles 24 h before oxazolone exposure. The pretreated UVMSC-EVs showed protective activity, elevating cell viability, reducing intracellular ROS, and reducing the changes in the mitochondrial membrane potential compared to the cells with a direct oxazolone treatment alone. The UCMSC-EVs exhibited anti-inflammatory activity via reducing the inflammatory cytokines IL-1ß and TNF-α. A mechanism study showed that the UCMSC-EVs increased the protein expression levels of SIRT1 and P53 and reduced P65 protein expression. It was concluded that UVMSC-EVs can induce the antioxidant defense systems of HaCaT cells and that they may have potential as functional ingredients in anti-aging cosmetics for skin care.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Oxazolona , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
4.
Int J Mol Sci ; 19(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081534

RESUMO

Rhodiola crenulata root extract (RCE) has been shown to possess protective activities against hypoxia both in vitro and in vivo. However, the effects of RCE on response to hypoxia in the endothelium remain unclear. In this study, we aimed to examine the effects of RCE in endothelial cells challenged with hypoxic exposure and to elucidate the underlying mechanisms. Human umbilical vein endothelial cells were pretreated with or without RCE and then exposed to hypoxia (1% O2) for 24 h. Cell viability, nitric oxide (NO) production, oxidative stress markers, as well as mechanistic readouts were studied. We found that hypoxia-induced cell death, impaired NO production, and oxidative stress. These responses were significantly attenuated by RCE treatment and were associated with the activation of AMP-activated kinase and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, we showed that RCE protected endothelial cells from hypoxic insult and suggested that R. crenulata might be useful for the prevention of hypoxia-associated vascular dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhodiola/química , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Biomed J ; : 100721, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636899

RESUMO

Extracellular vesicles derived from human umbilical cord-derived mesenchymal stem cells (UCMSC-EVs) have been postulated to have therapeutic potential for various diseases. However, the biodistribution and pharmacokinetics of these vesicles are still unclear. For a better understanding of the in vivo properties of UCMSC-EVs, in the present study, these vesicles were first radiolabeled with Technetium-99 m (99mTc-UCMSC-EVs) and evaluated using in vivo single photon emission computed tomography (SPECT) imaging and biodistribution experiments. SPECT images demonstrated that the liver and spleen tissues mainly took up the 99mTc-UCMSC-EVs. The biodistribution study observed slight uptake in the thyroid and stomach, indicating that 99mTc-UCMSC-EVs was stable at 24 h in vivo. The pharmacokinetic analyses of the blood half-life demonstrated the quick distribution phase (0.85 ±â€¯0.28 min) and elimination phase (25.22 ±â€¯20.76 min) in mice. This study provides a convenient and efficient method for 99mTc-UCMSC-EVs preparation without disturbing their properties. In conclusion, the biodistribution, quick elimination, and suitable stability in vivo of 99mTc-UCMSC-EVs were quantified by the noninvasive imaging and pharmacokinetic analyses, which provides useful information for indication selection, dosage protocol design, and toxicity assessment in future applications.

6.
Sci Rep ; 13(1): 18368, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884620

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide with novel therapeutic developmental challenges. Polygonum barbatum has anticancer potential, but its mechanism(s) are unclear. This study investigates the inhibitory effect of P. barbatum on human CRC cells. Polygonum barbatum extract (PBE) and quercetin standard HPLC fingerprints were determined using analytical RP-HPLC and evaluations were completed using the human colon cancer cell line HCT-116 (KRASG13D mutation) and HT-29 (BRAF mutation) cells. Post-PBE treatment, cell viability, colony formation, migration, invasion, and apoptosis, as well as changes in the whole-transcriptome of cells were analyzed. PBE significantly reduced CRC cell growth, migration, and invasion, and the genes responsible for extracellular matrix (ECM) organization, cell motility, and cell growth were suppressed by PBE. The differentially expressed genes revealed that PBE treatment exerted a significant effect on the ECM interaction and focal adhesion pathways. Epithelial-to-mesenchymal transition markers, N-cadherin, vimentin, SLUG, and SNAIL, were shown to be regulated by PBE. These effects were associated with blockade of the Yes-associated protein and the GSK3ß/ß-catenin axis. PBE exerts a significant inhibitory effect on CRC cells and may be applicable in clinical trials.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Polygonum , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Extratos Vegetais/farmacologia
7.
Nanoscale Res Lett ; 17(1): 41, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366127

RESUMO

Internet of Things (IoT) technology is prosperous for the betterment of human well-being. With the expeditious needs of miniature functional devices and systems for adaptive optics and light manipulation at will, relevant sensing techniques are thus in the urgent stage of development. Extensive developments in ultrathin artificial structures, namely metasurfaces, are paving the way for the next-generation devices. A bunch of tunable and reconfigurable metasurfaces with diversified catalogs of mechanisms have been developed recently, enabling dynamic light modulation on demand. On the other hand, monolithic integration of metasurfaces and light-emitting sources form ultracompact meta-devices as well as exhibiting desired functionalities. Photon-matter interaction provides revolution in more compact meta-devices, manipulating light directly at the source. This study presents an outlook on this merging paradigm for ultracompact nanophotonics with metasurfaces, also known as metaphotonics. Recent advances in the field hold great promise for the novel photonic devices with light emission and manipulation in simplicity.

9.
Healthcare (Basel) ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34828611

RESUMO

BACKGROUND: The Pay-for-performance (P4P) program of diabetes care has demonstrated successful outcomes in patients with type 2 diabetes. However, the effectiveness of this multidisciplinary care model for psychiatric patients has never been evaluated. The objective of this study is to examine the effectiveness of P4P program of diabetes for psychiatric patients with diabetes. METHODS: This study utilized a retrospective cohort design to examine the effectiveness of P4P program of diabetes care for psychiatric patients with diabetes. The participants' HbA1c (hemoglobin A1c) data of the fourth quarter in 2018 were used as baseline value, while P4P program was not applied yet. HbA1c data of every quarter in 2019 were collected. Generalized estimating equations (GEE) was used to analyze the change of HbA1c level. RESULTS: The HbA1c level increased slightly in the first quarter, and then decreased gradually since the second quarter. The HbA1c level was significantly lower in the fourth quarter after P4P program intervention (p < 0.05). CONCLUSION: P4P program of diabetes care is also effective on psychiatric patients with diabetes, and this multidisciplinary care model could be encouraged and promoted for psychiatric patients with diabetes.

10.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685137

RESUMO

Quantum dot (QD)-based RGB micro-LED technology is seen as one of the most promising approaches towards full color micro-LED displays. In this work, we present a novel nanoporous GaN (NP-GaN) structure that can scatter light and host QDs, as well as a new type of micro-LED array based on an NP-GaN embedded with QDs. Compared to typical QD films, this structure can significantly enhance the light absorption and stability of QDs. As a result, the green and red QDs exhibited light conversion efficiencies of 90.3% and 96.1% respectively, leading to improvements to the luminous uniformity of the green and red subpixels by 90.7% and 91.2% respectively. This study provides a viable pathway to develop high-uniform and high-efficient color conversion micro-LED displays.

11.
Langmuir ; 26(12): 10177-82, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20232923

RESUMO

Self-assembled rodlike (0.3-2.5 microm in diameter and 5.3-31 microm in length) and disklike microstructures (1.8-10.6 microm in width and 0.1-1.0 microm in thickness) are uniquely present in amorphous clay aggregates. Clay units were prepared by intercalation of Na(+)-montmorillonite (Na(+)-MMT) with copper ions (Cu(2+)) and poly(oxypropylene)-amine salt (POP) in simultaneous or stepwise ionic exchange reactions. Differences in process control during incorporation of Cu(2+) and hydrophobic POP greatly affected the layer structure of the clay units (d spacing of 12-53 A) and consequently their amphiphilic dispersion properties. By controlling the dispersion in water and drying at 80 degrees C, highly ordered self-assembly structures were obtained, presumably as a result of self-piling of clay units in competing vertical and horizontal directions. In general, association with Cu(2+) yielded units with a disklike microstructure, in contrast to the rod-like structure obtained for POP-intercalated clay. The self-assembled structures were characterized using X-ray diffraction, UV adsorption, thermal gravimetric analysis, zeta potential, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. Control of the clay self-piling process provides a new synthetic route for the fabrication of bottom-up microstructures that are potentially useful for templates, sensors, and electronic devices.

12.
Am J Chin Med ; 48(1): 91-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31931595

RESUMO

Rhodiola crenulata, a popular folk medicine for anti-altitude sickness in Tibet, has been shown to have protective effects against high glucose (HG)-induced endothelial cell dysfunction in human umbilical vein endothelial cells (HUVECs). However, its mechanisms of action are unclear. Here, we aimed to examine the effects and the mechanisms of action of Rhodiola crenulata extract (RCE) on matrix metalloproteinases (MMPs) and inflammatory responses under HG conditions. HUVECs were pretreated with RCE or untreated and then exposed to 33mM glucose medium for 24h. The levels of oxidative stress markers, MMPs, endogenous tissue inhibitors of MMPs (TIMPs), and adhesion molecules were determined. Zymography assays were also carried out. We found that RCE significantly decreased HG-induced increases in reactive oxygen species (ROS) and activation of MAPK and NF-κB pathways. In addition, RCE not only significantly reduced the expression and activities of MMPs but also upregulated TIMP protein levels. Consistently, HG-induced activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88) signaling pathway, intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and high mobility group box 1 (HMGB1) as well as endothelial cell apoptosis was inhibited by RCE treatment. RCE exerts protective effects on endothelial cells against HG insult, partially by suppressing the HMGB1/TLR4 axis. These findings indicate that Rhodiola crenulata may be a potential therapeutic agent for diabetes-associated vascular diseases.


Assuntos
Proteína HMGB1/metabolismo , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhodiola/química , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo
13.
J Phys Chem B ; 113(18): 6240-5, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19354239

RESUMO

We observed the arrays of molecular bundle strands in ribbon shape and their perpendicular arrangement between the bundle strands from the molecules that consist of symmetrical structure of poly(oxyethylene)-segmented bisamido acid (POE-amido acid). The molecules enabled to self-assemble into bundle strands of 5-10 nm width, 1-7 nm height, and 5-120 nm length, which further self-arranged into secondary bundle clusters. By varying the conditions of spin-coating or dip-coating (immersion) on polyethersulfone film surface and drying temperature (26 or 19 degrees C), the morphologies of the bundle clusters were controllable. Lengthy rattan-like strands with multiple "side-armed" short bundle strands were observed from tapping-mode atomic force microscopy. Different arrays of parallel bundle strands in cluster (by spin-coating method) and rattan-like strands with side arms (by dip-coating method) were observed, with the same bundle units of 5-10 nm in width but varying in height from 0.5 to 7 nm. The bundle height of 0.5 nm obtained by carefully controlled dip-coating into film implies a "self-assembled monolayer (SAM)" formation. The perpendicular bundle side arm arrangement is attributed to the complementary noncovalent bonding forces of POE and -COOH interaction. The presence of a POE crystalline segment (T(m) = 22.6 degrees C, DeltaH = 85.6 J/g) in the molecules contributed predominately to the formation of bundles and hierarchical parallel clusters or perpendicular "side arms".


Assuntos
Ácidos/química , Amidas/química , Polietilenoglicóis/química , Nanopartículas Metálicas , Microscopia de Força Atômica , Modelos Moleculares , Prata/química
14.
Phytomedicine ; 38: 183-191, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425651

RESUMO

BACKGROUND: Astragalus genus includes most of the common, historical herbal medicines that have various applications in Asian countries. However, clinical data and mechanistic insights into their actions are still lacking. PURPOSE: In this study, we aimed to examine the effects of astragalosides on wound healing in vitro and in vivo, as well as the underlying mechanisms of these actions. METHODS: The wound healing activity of astragalosides was investigated in human HaCaT keratinocytes, human dermal fibroblast (HDF) cells, and murine models of wound healing. RESULTS: All eight astragalosides studied enhanced epidermal growth factor receptor (EGFR) activity in HaCaT cells. Among them, astragaloside VI (AS-VI) showed the strongest EGFR activation. Consistently, AS-VI and cycloastragenol-6-O-beta-D-glucoside (CMG), which is the major metabolite of astragalosides, enhanced extracellular signal-regulated kinase (ERK) activity in a concentration-dependent manner. In agreement, both compounds induced EGFR-dependent cell proliferation and migration in HaCaT and HDF cells. In addition, we showed that AS-VI and CMG accelerated the healing of both sterile and infected wounds in vivo. These effects were associated with increased angiogenesis in the scar tissue. CONCLUSION: AS-VI and CMG increased the proliferation and migration of skin cells via activation of the EGFR/ERK signalling pathway, resulting in the improvement of wound healing in vitro and in vivo. These findings indicate the therapeutic potential of AS-VI and CMG to accelerate wound healing; additionally, they suggest the mechanistic basis of this activity.


Assuntos
Glucosídeos/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Astrágalo/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Pele/citologia , Pele/efeitos dos fármacos
15.
J Phys Chem B ; 111(34): 10275-80, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17685643

RESUMO

We have developed a process to incorporate the model protein, bovine serum albumin (BSA), into the layered spacing of swelled mica. By a stepwise intercalation, the sodium form of synthetic fluorinated mica (Mica) was first exchanged with the poly(oxyalkylene)-diamine salts (POA-amine) through an ionic exchange reaction and then the BSA embedment. The first step of the Mica space expansion from the pristine 12 A to 18-93 A was affected by hydrophobic POP-amines (POP2000 of 2000 g/mol and POP4000 of 4000 g/mol M(w)) and the hydrophilic POE2000 that intercalated Na+-Mica to afford different basal spacing (39, 93, and 18 A, respectively). The POA modification was necessary for the BSA intercalation and resulted in an uncompressed form of protein conformation in the layered confinement (XRD d spacing = 60-71 A). For comparison, direct intercalation rendered only low d spacing (30 A), in which BSA was embedded in a compressed conformation. The BSA-mica complexes were characterized by X-ray, TGA, and solution analyses. The stepwise process provides a new method for embedding large protein molecules into the clay layered structure generating protein/layered silicate complexes.


Assuntos
Silicatos de Alumínio/química , Poliaminas/química , Soroalbumina Bovina/química , Animais , Bovinos , Flúor/química , Interações Hidrofóbicas e Hidrofílicas , Sódio/química , Temperatura
16.
Am J Chin Med ; 45(6): 1201-1216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28830211

RESUMO

Rhodiola crenulata root extract (RCE), a traditional Chinese medicine, has been shown to regulate glucose and lipid metabolism via the AMPK pathway in high glucose (HG) conditions. However, the effect of RCE on HG-induced endothelial dysfunction remains unclear. The present study was designed to examine the effects and mechanisms of RCE against hyperglycemic insult in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were pretreated with or without RCE and then exposed to 33[Formula: see text]mM HG medium. The cell viability, nitrite production, oxidative stress markers, and vasoactive factors, as well as the mechanisms underlying RCE action, were then investigated. We found that RCE significantly improved cell death, nitric oxide (NO) defects, and oxidative stress in HG conditions. In addition, RCE significantly decreased the HG-induced vasoactive markers, including endothelin-1 (ET-1), fibronectin, and vascular endothelial growth factor (VEGF). However, the RCE-restored AMPK-Akt-eNOS-NO axis and cell viability were abolished by the presence of an AMPK inhibitor. These findings suggested that the protective effects of RCE were associated with the AMPK-Akt-eNOS-NO signaling pathway. In conclusion, we showed that RCE protected endothelial cells from hyperglycemic insult and demonstrated its potential for use as a treatment for endothelial dysfunction in diabetes mellitus.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glucose/efeitos adversos , Extratos Vegetais/farmacologia , Rhodiola/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/etiologia , Endotelina-1/metabolismo , Fibronectinas/metabolismo , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Sci Rep ; 7(1): 12302, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951595

RESUMO

Astragaloside II (AS II) extracted from Astragalus membranaceus has been reported to promote tissue wound repair. However, the effect of AS II on inflammatory bowel disease is unknown. We investigated the effects and mechanism of AS II on intestinal wound healing in both in vitro and in vivo models. Human intestinal Caco-2 cells were treated with multiple concentrations of AS II to assess cell proliferation, scratch wound closure, L-arginine uptake, cationic amino acid transporter activity, and activation of the mTOR signaling pathway. These effects were also measured in a mouse model of colitis. AS II promoted wound closure and increased cell proliferation, L-arginine uptake, CAT1 and CAT2 protein levels, total protein synthesis, and phosphorylation of mTOR, S6K, and 4E-BP1 in Caco-2 cells. These effects were suppressed by lysine or rapamycin treatment, suggesting that the enhanced arginine uptake mediates AS II-induced wound healing. Similar results were also observed in vivo. Our findings indicate that AS II can contribute to epithelial barrier repair following intestinal injury, and may offer a therapeutic avenue in treating irritable bowel disease.


Assuntos
Colite/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Saponinas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Arginina/metabolismo , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Ácido Trinitrobenzenossulfônico/toxicidade
18.
J Phys Chem B ; 110(37): 18115-20, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16970422

RESUMO

Thin silicate platelets in a dimension of approximately 80 x 80 x 1 nm(3) are isolated for the first time by a newly developed process involving one-step exfoliation of natural montmorillonite clay and toluene/aqueous NaOH extraction. The platelets are observed to be polygon shape by transmission electron microscopy (TEM) and round bent-leaf shape by dynamic force microscopy (DFM). Individual platelets possessing high-aspect-ratio dimension and ionic character are able to self-assemble into microscale fiber bundles after water evaporation. The self-stacking mechanism indicated strong face-to-face ionic charge stacking propensity in triggering a vertical growth. Regularity of fibrous bundles in an average 5 microm length has been observed.

19.
J Phys Chem B ; 110(7): 3302-7, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16494344

RESUMO

The hydrogen bonding structures of room-temperature ionic liquids 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate have been studied by infrared spectroscopy. High-pressure infrared spectral profiles and theoretical calculations allow us to make a vibrational assignment of these compounds. The imidazolium C-H bands of 1,3-dimethylimidazolium methyl sulfate display anomalous non-monotonic pressure-induced frequency shifts. This discontinuity in frequency shift is related to enhanced C-H...O hydrogen bonding. This behavior is in contrast with the trend of blue shifts in frequency for the methyl C-H stretching mode at ca. 2960 cm(-1). Our results indicated that the imidazolium C-H groups are more favorable sites for hydrogen bonding than the methyl C-H groups in the pure 1,3-dimethylimidazolium methyl sulfate. Nevertheless, both methyl C-H and imidazolium C-H groups are favorable sites for C-H...O hydrogen bonding in a dilute 1,3-dimethylimidazolium methyl sulfate/D(2)O mixture. Hydrogen bond-like C-H...F interactions were observed between PF(6)(-) and H atoms on the alkyl side chains and imidazolium ring for 1-butyl-3-methylimidazolium hexafluorophosphate.

20.
J Phys Chem B ; 109(28): 13510-4, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16852689

RESUMO

Sodium salts of poly(oxypropylene)-trimellitic amido acid (POP-amido acid), prepared from the reaction of POP-diamines and trimellitic anhydride, were found to self-assemble into orderly molecular bundles. The POP-amido acid has a symmetrical structure consisting of a hydrophobic POP middle block (2000 g/mol) and four symmetrical carboxyl end groups. By dissolving in water and evaporating on a polyether sulfone film, the POP-amido acid molecules self-assembled into a unique array with average dimensions of 7-13 nm in width, 2-5 nm in height, and 20-50 nm in length, observed by atomic force microscope. Varied morphologies were also observed when varying the pH, solvents, evaporating rate, concentration, and substrate surface. Unlike the common surfactants of single head-to-tail structure and the naturally occurring phospholipids of one head and two tails, the synthesized POP derivative is a symmetrical structure of four hydrophilic heads and one long hydrophobic block. Through the complementary noncovalent bonding forces, the molecules tend to align into molecular bundles or loops as the primary structure. The formation of different morphologies is controlled by the intermolecular forces including hydrogen bonding, aromatic pi-pi stacking, ionic charge, and hydrophobic interaction, in a concerted manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA