Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 33(4): 778-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21484953

RESUMO

OBJECTIVES: Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. EXPERIMENTAL DESIGN: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. PRINCIPAL OBSERVATIONS: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. CONCLUSIONS: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Adulto Jovem
2.
Front Neurol ; 9: 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233480

RESUMO

Despite recent advances in our understanding of consciousness disorders, accurate diagnosis of severely brain-damaged patients is still a major clinical challenge. We here present the case of a patient who was considered in an unresponsive wakefulness syndrome/vegetative state for 20 years. Repeated standardized behavioral examinations combined to neuroimaging assessments allowed us to show that this patient was in fact fully conscious and was able to functionally communicate. We thus revised the diagnosis into an incomplete locked-in syndrome, notably because the main brain lesion was located in the brainstem. Clinical examinations of severe brain injured patients suffering from serious motor impairment should systematically include repeated standardized behavioral assessments and, when possible, neuroimaging evaluations encompassing magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography.

3.
NeuroRehabilitation ; 40(2): 251-258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222547

RESUMO

BACKGROUND: Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. OBJECTIVES: To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. METHODS: Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. RESULTS: Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. CONCLUSION: Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica/métodos , Transtornos Neurológicos da Marcha/terapia , Plasticidade Neuronal/fisiologia , Nervo Fibular/fisiologia , Acidente Vascular Cerebral/terapia , Adolescente , Doença Crônica , Eletrodos Implantados , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia
4.
Brain Behav ; 7(3): e00626, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28293468

RESUMO

INTRODUCTION: Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. OBJECTIVE: Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. METHODS: First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. RESULTS: Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. CONCLUSIONS: This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/anatomia & histologia , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Rede Nervosa/anatomia & histologia , Análise de Componente Principal
5.
Brain Behav ; 6(1): e00424, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27110443

RESUMO

INTRODUCTION: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. OBJECTIVE: We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. METHODS: We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. RESULTS: The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. CONCLUSIONS: The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos da Consciência/metabolismo , Transtornos da Consciência/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Mapeamento Encefálico/métodos , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Descanso
6.
Brain Stimul ; 8(1): 142-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25481074

RESUMO

BACKGROUND: Transcranial magnetic stimulation combined with electroencephalography (TMS/EEG) represents a valuable tool to probe cortical excitability and connectivity. Although several procedures have been devised to abolish TMS-related artifacts, direct evidence that it is possible to record TMS-evoked potentials (TEPs) that purely reflect cortical responses to TMS are still lacking. OBJECTIVE: To demonstrate that when TMS is delivered on a human head with intact nerves, scalp and ocular muscles, TEPs are present only if a functional portion of cortex is targeted and is absent otherwise. METHODS: We performed extensive navigated TMS/EEG mappings in three vegetative state patients and in eight healthy controls. Patients were selected based on the extension of their cortical lesions as revealed by structural/functional imaging: the cerebral cortex was globally damaged in Patient 1 due to cerebral anoxia, Patient 2 showed a traumatic damage affecting one cerebral hemisphere, while Patient 3 was characterized by one left sided and one right-sided focal ischemic lesion. RESULTS: In Patient 1, TMS performed at any targeted cortical site did not elicit statistically significant TEPs. In Patient 2, TEPs were absent when the damaged hemisphere was targeted, while were present over the healthy side. In Patient 3, significant TEPs were absent when cortical lesions were targeted and present otherwise. Significant TEPs were always present in healthy controls. CONCLUSIONS: These findings suggest that, provided that appropriate experimental procedures are employed, TEPs are genuine cortical responses detectable only when preserved cortical tissue is stimulated. Hence, a dependable assessment of cortical excitability and connectivity in brain-injured patients requires the use of neuronavigated TMS.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Eletroencefalografia , Estado Vegetativo Persistente/patologia , Estimulação Magnética Transcraniana , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Córtex Cerebral/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Vegetativo Persistente/fisiopatologia , Adulto Jovem
7.
PLoS One ; 7(5): e37238, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629375

RESUMO

Clinical diagnosis of disorders of consciousness (DOC) caused by brain injury poses great challenges since patients are often behaviorally unresponsive. A promising new approach towards objective DOC diagnosis may be offered by the analysis of ultra-slow (<0.1 Hz) spontaneous brain activity fluctuations measured with functional magnetic resonance imaging (fMRI) during the resting-state. Previous work has shown reduced functional connectivity within the "default network", a subset of regions known to be deactivated during engaging tasks, which correlated with the degree of consciousness impairment. However, it remains unclear whether the breakdown of connectivity is restricted to the "default network", and to what degree changes in functional connectivity can be observed at the single subject level. Here, we analyzed resting-state inter-hemispheric connectivity in three homotopic regions of interest, which could reliably be identified based on distinct anatomical landmarks, and were part of the "Extrinsic" (externally oriented, task positive) network (pre- and postcentral gyrus, and intraparietal sulcus). Resting-state fMRI data were acquired for a group of 11 healthy subjects and 8 DOC patients. At the group level, our results indicate decreased inter-hemispheric functional connectivity in subjects with impaired awareness as compared to subjects with intact awareness. Individual connectivity scores significantly correlated with the degree of consciousness. Furthermore, a single-case statistic indicated a significant deviation from the healthy sample in 5/8 patients. Importantly, of the three patients whose connectivity indices were comparable to the healthy sample, one was diagnosed as locked-in. Taken together, our results further highlight the clinical potential of resting-state connectivity analysis and might guide the way towards a connectivity measure complementing existing DOC diagnosis.


Assuntos
Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA