Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(11): 114501, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852504

RESUMO

In this study, a novel single-piece thin multi-layer tungsten resistive heater was successfully fabricated using additive manufacturing and tested as an electrothermal thruster. The heater has 12 resistive layers, with each layer having a thickness and height of 0.15 and 81 mm, respectively, and can provide high heating efficiency. A single-piece or monolithic heater was manufactured via additive manufacturing technique, which drastically improved its reliability and decreased its manufacturing cost. In the heating and thrust measurement tests that used nitrogen gas as a propellant, the heater reached a gas temperature of ∼2000 K at a 140-A heater current without experiencing any failure. The tungsten-heater resistance linearly increased with an increase in temperature due to the temperature dependence of tungsten's resistivity. The specific impulse and thrust increased with the heater temperature in accordance with the theoretical prediction. Even including a voltage drop due to a contact resistance, the achieved heater efficiency reached 63% at a 100-A heater current even without a thermal insulation around the thruster. The heater efficiency decreased with an increase in the heater temperature due to heat loss to the surroundings. The heat-loss analysis indicated that both thermal conduction and radiation heat losses were crucial for improving the heater performance at a high-temperature operation of over 2000 K.

3.
Rev Sci Instrum ; 83(12): 124702, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278009

RESUMO

In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

4.
Rev Sci Instrum ; 82(12): 123103, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225195

RESUMO

In order to reveal the physical processes taking place within the "µ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the µ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA