Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(1): e2304050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712104

RESUMO

Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.

2.
ACS Appl Mater Interfaces ; 13(33): 39491-39500, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378912

RESUMO

Constructing a step-scheme (S-scheme) heterojunction represents a promising route to overcome the drawbacks of single-component and traditional heterostructured photocatalysts by simultaneously broadening the optical response range and optimizing the redox ability of the photocatalytic system, the efficiency of which greatly lies in the separation behaviors of photogenerated charge carriers with strong redox capabilities. Herein, we demonstrate interfacial facet engineering as an effective strategy to manipulate the charge transfer and separation for substantially improving the photocatalytic activities of S-scheme heterojunctions. The facet engineering is performed with the growth of ZnIn2S4 on (010) and (001) facet-dominated BiOBr nanosheets to fabricate ZIS/BOB-(010) and ZIS/BOB-(001) S-scheme heterojunctions, respectively. It is disclosed that a larger Fermi level difference between BiOBr-(001) and ZnIn2S4 enables the formation of a stronger built-in electric field with more serious band bending in the space charge region around the interface. As a result, the directional migration and recombination of pointless photoexcited electrons in the conduction band (CB) of BiOBr and holes in the valence band (VB) of ZnIn2S4 with weak redox ability are speeded up enormously, thereby contributing to more efficient spatial separation of powerful CB electrons of ZnIn2S4 and VB holes of BiOBr for participating in overall redox reactions. Profiting from these merits, the ZIS/BOB-(001) displays a significant superiority in photocatalytic H2 evolution over ZIS/BOB-(010) and mono-component counterparts. This work provides new deep insights into the rational construction of a S-scheme photocatalyst based on an interfacial facet design from the viewpoint of internal electric field regulation.

3.
Front Chem ; 7: 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775365

RESUMO

The synthesis of heterogeneous cooperative catalysts in which two or more catalytically active components are spatially separated within a single material has generated considerable research efforts. The multiple functionalities of catalysts can significantly improve the efficiency of existing organic chemical transformations. Herein, we introduce ruthenium (Ru) nanoparticles (NPs) on the surfaces of a metal-organic framework pre-encapsulated with polyoxometalate silicotungstic acid (SiW) UiO-66 (University of Oslo [UiO]) and prepared a 2.0% Ru/11.7% SiW@UiO-66 porous hybrid using the impregnation method. The close synergistic effect of metal Ru NPs, SiW, and UiO-66 endow 2.0% Ru/11.7% SiW@UiO-66 with increased activity and stability for complete methyl levulinate (ML) conversion and exclusive γ-valerolactone (GVL) selectivity at mild conditions of 80°C and at a H2 pressure of 0.5 MPa. Effectively, this serves as a model reaction for the upgrading of biomass and outperforms the performances of the constituent parts and that of the physical mixture (SiW + Ru/UiO-66). The highly dispersed Ru NPs act as active centers for hydrogenation, while the SiW molecules possess Brønsted acidic sites that cooperatively promote the subsequent lactonization of MHV to generate GVL, and the UiO-66 crystal accelerates the mass transportation facilitated by its own porous structure with a large surface area.

4.
Mater Sci Eng C Mater Biol Appl ; 75: 1317-1325, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415421

RESUMO

Herein, a single-step co-reduction aqueous route was designed for preparation of hierarchical AuPt alloy nanochains, firstly using amprolium hydrochloride as a new stabilizing agent and structure-director. The morphology, structure, composition, and size of the products were characterized by a series of technique. The growth mechanism of AuPt nanochains was discussed in details. The AuPt nanochains modified glassy carbon electrode showed the improved analytical performances for determination of nitrite and hydrazine. The linear ranges of nitrite are 0.5-366.4µM and 466.4-2666.4µM for the two segments, and the detection limit is 0.03µM (S/N=3). The linear ranges of hydrazine are 5.0-116.4µM and 166.4-2666.4µM for the two segments, along with the low detection limit of 0.26µM (S/N=3). The performances of AuPt nanochains were superior to those of individual Pt and Au nanoparticles. It is ascribed to the specific hierarchical structures and synergistic effects of the bimetals.


Assuntos
Ligas/química , Ouro/química , Hidrazinas/análise , Nanopartículas Metálicas/química , Nitritos/análise , Platina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA