Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(21): e38265, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788038

RESUMO

Acute pancreatitis (AP) is a complex and unpredictable condition, of which hypertriglyceridemia (HTG) is the third most prevalent cause. This study aimed to conduct a retrospective analysis of clinical data from hospitalized AP patients to uncover a potential correlation between triglyceride (TG) levels and the necessity for intensive care unit (ICU) admission. This retrospective cohort study utilized the Medical Information Mart for Intensive Care IV 2.2 (MIMIC-IV) critical care dataset, incorporating data from 698 patients with hypertriglyceridemic acute pancreatitis (HTG-AP). The analysis employed the RCS model along with univariate and multivariate logistic regression methods to affirm the association between triglyceride levels and ICU admission. Subgroup analysis was performed to investigate specific populations. The study included 698 patients with AP, 42.41% of whom experienced HTG during hospitalization. RCS analysis revealed a linear association between TG levels and risk of ICU admission (p for nonlinear = .219, p for overall = .009). Multivariate logistic regression analysis indicated an increased risk of ICU admission in the TG range of 1.7-5.65 mmol/L (aOR = 1.83, 95% CI 1.12-2.99, P = .015) and TG >11.3 mmol/L (aOR = 5.69, 95% CI 2.36-13.74, P < .001) compared to the normal group. Similar results were observed across the various subgroups. As triglyceride levels increased, there was a corresponding increase in ICU admissions. Patients within the 1.7 to 5.65 mmol/L and > 11.3 mmol/L triglyceride groups exhibited higher rates of ICU admissions. Moreover, we observed a higher risk of ICU hospitalization even with mild TG elevation.


Assuntos
Hospitalização , Hipertrigliceridemia , Unidades de Terapia Intensiva , Pancreatite , Triglicerídeos , Humanos , Estudos Retrospectivos , Pancreatite/sangue , Pancreatite/epidemiologia , Masculino , Feminino , Triglicerídeos/sangue , Pessoa de Meia-Idade , Unidades de Terapia Intensiva/estatística & dados numéricos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/epidemiologia , Hospitalização/estatística & dados numéricos , Adulto , Idoso , Modelos Logísticos , Doença Aguda
2.
Fitoterapia ; 172: 105746, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967772

RESUMO

Cholelithiasis is a common and frequently occurring disease worldwide that belongs to the category of jaundice in traditional Chinese medicine. Yinchenhao decoction (YD) consists of Artemisia capillaris Thunb., Gardenia jasminoides J.Ellis, and Rheum palmatum L., and is traditionally used to treat jaundice, which has a significant therapeutic effect on cholelithiasis. Our study aimed to investigate the pathological mechanism of cholelithiasis and the therapeutic mechanism of YD via mucin in the gallbladder and intestine. YD was prepared and analyzed using HPLC. The supersaturation stability experiment was designed by the solvent-shift method. The cell transport experiment was conducted by coculture monolayers. The animal experiment was performed using a cholelithiasis model with a high-cholesterol diet. The related indicators were detected by automatic biochemical analyzer, PCR, western blot, or ELISA. Statistics were analyzed using χ2-tests and t-tests. As the results, in cholelithiasis, MUC5AC highly expressed in the gallbladder shortened cholesterol supersaturation and promoted cholesterol crystallization via the inflammatory cytokine signaling pathway; MUC2 highly expressed in the small intestine prolonged cholesterol supersaturation and promoted cholesterol absorption via the inflammatory cytokine signaling pathway. YD inhibited mucin expression in the gallbladder and intestine in a concentration-dependent manner for cholelithiasis treatment by inhibiting the inflammatory cytokine signaling pathway, which was attributed to the active components, including chlorogenic acid, geniposide, and rhein.


Assuntos
Colelitíase , Medicamentos de Ervas Chinesas , Icterícia , Animais , Vesícula Biliar/química , Vesícula Biliar/metabolismo , Mucinas/metabolismo , Estrutura Molecular , Colelitíase/tratamento farmacológico , Colelitíase/química , Colelitíase/metabolismo , Colesterol/metabolismo , Icterícia/metabolismo , Intestinos/química , Citocinas/metabolismo
3.
Int Immunopharmacol ; 137: 112418, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901244

RESUMO

Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1ß and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1ß) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.


Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Chalconas , Citocinas , Microbioma Gastrointestinal , Receptores Acoplados a Proteínas G , Sepse , Animais , Receptores Acoplados a Proteínas G/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/complicações , Citocinas/metabolismo , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Ratos Sprague-Dawley , Homeostase/efeitos dos fármacos , Linhagem Celular , Pulmão/patologia , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Lipopolissacarídeos , Humanos , Flavanonas
4.
Phytomedicine ; 109: 154551, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610119

RESUMO

BACKGROUND: The significant clinical efficacy of Xuanfei Baidu Decoction (XFBD) is proven in the treatment of patients with coronavirus disease 2019 (COVID-19) in China. However, the mechanisms of XFBD against acute lung injury (ALI) are still poorly understood. METHODS: In vivo, the mouse model of ALI was induced by IgG immune complexes (IgG-IC), and then XFBD (4g/kg, 8g/kg) were administered by gavage respectively. 24 h after inducing ALI, the lungs were collected for histological and molecular analysis. In vitro, alveolar macrophages inflammation models induced by IgG-IC were performed and treated with different dosage of XFBD-containing serum to investigate the protective role and molecular mechanisms of XFBD. RESULTS: The results revealed that XFBD mitigated lung injury and significantly downregulated the production of pro-inflammatory mediators in lung tissues and macrophages upon IgG-IC stimulation. Notably, XFBD attenuated C3a and C5a generation, inhibited the expression of C3aR and C5aR and suppressed the activation of JAK2/STAT3/SOCS3 and NF-κB signaling pathway in lung tissues and macrophages induced by IgG-IC. Moreover, in vitro experiments, we verified that Colivelin TFA (CAF, STAT3 activator) and C5a treatment markedly elevated the IgG-IC-triggered inflammatory responses in macrophages and XFBD weakened the effects of CAF or C5a. CONCLUSION: XFBD suppressed complement overactivation and ameliorated IgG immune complex-induced acute lung injury by inhibiting JAK2/STAT3/SOCS3 and NF-κB signaling pathway. These data contribute to understanding the mechanisms of XFBD in COVID-19 treatment.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , COVID-19/patologia , Tratamento Farmacológico da COVID-19 , Imunoglobulina G , Janus Quinase 2/metabolismo , Lipopolissacarídeos , Pulmão/patologia , NF-kappa B/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
J Ethnopharmacol ; 311: 116428, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. AIM OF THE STUDY: To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. MATERIALS AND METHODS: The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. RESULTS: TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. CONCLUSION: Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.


Assuntos
Neoplasias do Colo , Lesões Experimentais por Radiação , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/prevenção & controle , Apoptose , Diarreia , Dor Abdominal
6.
PeerJ ; 10: e13082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310165

RESUMO

APAP is one of the most commonly used antipyretic and pain medications, but excessive use can cause liver toxicity and damage. 3,4-dihydroxyphenylethyl alcohol glycoside (DAG) is a component isolated from Sargentodoxa cuneata known to have anti-apoptotic, anti-oxidation and anti-inflammatory effects. However, the effects of DAG on acute liver failure (ALF) are largely unknown. The purpose of this study is to study the protective effects and mechanism of DAG on APAP-induced ALF in mice. We established an ALF model in adult male pathogen-free C57BL/6 mice treated with APAP (300 mg/kg) by intraperitoneal injection and resolved by 24 h. Hematoxylin and eosin (HE) staining was used to evaluate the pathological changes in mouse liver tissue. The infiltration of neutrophils in liver tissue and reactive oxygen species (ROS) in AML12 cells were analyzed by flow cytometry. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were analyzed using relevant kits. Our results show that DAG reduced APAP-induced serum ALT and AST levels, histopathological changes, liver neutrophil infiltration and proinflammatory cytokines production, also attenuated the accumulation of MDA and the exhaustion of GSH, CAT and SOD. In vitro experiment indicated that DAG dose-dependently inhibited APAP-induced the levels of pro-inflammatory factors (IL-1ß and IL18), and reactive oxygen species (ROS) and preventing GSH depletion in mouse AML12 hepatocytes. More interestingly, DAG inhibited the expression of ERK, HO-1, NLRP3, Caspase1 (p20) and Gasdermin-D and upregulated the expression of GPX4 in liver tissues and AML12hepatocytes. Therefore, our results indicate that DAG may act as a potential agent to treat ALF induced by APAP by inhibiting hepatocyte ferroptosis and pyroptosis.


Assuntos
Ferroptose , Falência Hepática Aguda , Masculino , Animais , Camundongos , Acetaminofen/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Camundongos Endogâmicos C57BL , Falência Hepática Aguda/induzido quimicamente , Hepatócitos/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA