Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928167

RESUMO

The placenta is a crucial determinant of fetal survival, growth, and development. Deficiency in placental development directly causes intrauterine growth retardation (IUGR). IUGR can lead to fetal growth restriction and an increase in the mortality rate. The genetic mechanisms underlying IUGR development, however, remain unclear. In the present study, we integrated whole-genome DNA methylation and transcriptomic analyses to determine distinct gene expression patterns in various placental tissues to identify pivotal genes that are implicated with IUGR development. By performing RNA-sequencing analysis, 1487 differentially expressed genes (DEGs), with 737 upregulated and 750 downregulated genes, were identified in IUGR pigs (H_IUGR) compared with that in normal birth weight pigs (N_IUGR) (p < 0.05); furthermore, 77 miRNAs, 1331 lncRNAs, and 61 circRNAs were differentially expressed. The protein-protein interaction network analysis revealed that among these DEGs, the genes GNGT1, ANXA1, and CDC20 related to cellular developmental processes and blood vessel development were the key genes associated with the development of IUGR. A total of 495,870 differentially methylated regions were identified between the N_IUGR and H_IUGR groups, which included 25,053 differentially methylated genes (DMEs); moreover, the overall methylation level was higher in the H_IUGR group than in the N_IUGR group. Combined analysis showed an inverse correlation between methylation levels and gene expression. A total of 1375 genes involved in developmental processes, tissue development, and immune system regulation exhibited methylation differences in gene expression levels in the promoter regions and gene ontology regions. Five genes, namely, ANXA1, ADM, NRP2, SHH, and SMAD1, with high methylation levels were identified as potential contributors to IUGR development. These findings provide valuable insights that DNA methylation plays a crucial role in the epigenetic regulation of gene expression and mammalian development and that DNA-hypermethylated genes contribute to IUGR development in Rongchang pigs.


Assuntos
Metilação de DNA , Retardo do Crescimento Fetal , Placenta , Animais , Retardo do Crescimento Fetal/genética , Suínos , Feminino , Gravidez , Placenta/metabolismo , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Epigênese Genética , MicroRNAs/genética , Transcriptoma/genética , Redes Reguladoras de Genes
2.
Heart Fail Rev ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943420

RESUMO

Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.

3.
Vet Med (Praha) ; 68(10): 392-402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38028206

RESUMO

Rongchang piglets were easily induced to cold stress and diarrhoea in the winter when raised in an open hog house. However, they also gradually recovered under mid-cold stress. Other studies have suggested gut microbiome might be involved in the host energy metabolism to relieve stress. To study how to adapt Rongchang piglets to cold stress by gut microbiome, thirty Rongchang piglets were randomly divided into a mild cold stress group and a control group for 30 consecutive days. The findings revealed that the piglets had low growth performance and a high diarrhoea rate and mortality rate during the first half of the cold treatment, but subsequently stabilised. The level of cortisol (COR) also displayed a similar trend. In the mild cold stress group, the relative abundance of Muribaculaceae significantly increased on day 15, and the predominant bacterial on day 30 was Lactobacillus sp. Our results indicated that the Rongchang piglet's production performance and health were impaired at the start of the mild cold stress. However, as time passed, the body could progressively adapt to the low temperature, and Lactobacillus sp. participated in this process. This study provides new insight into how to alleviate health damage caused by cold stress.

4.
Angew Chem Int Ed Engl ; 62(18): e202301470, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36879382

RESUMO

We report the first highly selective kinetic resolution of racemic α-chiral azides via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). Newly developed pyridine-bisoxazoline (PYBOX) ligands, bearing a C4 sulfonyl group, enable effective kinetic resolution of racemic azides derived from privileged scaffolds such as indanone, cyclopentenone, and oxindole, and their asymmetric CuAAC to afford α-tertiary 1,2,3-triazoles with high to excellent ee values. DFT calculations and control experiments reveal that the C4 sulfonyl group decreases the Lewis basicity of the ligand and increases the electrophilicity of the copper center for better recognition of azides, and functions as a shielding group to make the chiral pocket of the catalyst more effective.

5.
Drug Dev Res ; 83(2): 339-350, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34370322

RESUMO

Acute kidney injury (AKI) is a devastating comorbidity in sepsis and correlates with a very poor prognosis and increased mortality. Currently, we use lipopolysaccharide (LPS) to establish sepsis-related AKI and try to demonstrate the pathophysiological role of microRNA-214-5p (miR-214-5p) in this process. Mice were intravenously injected with the miR-214-5p agomir, antagomir or negative controls for three consecutive days and then received a single intraperitoneal injection of LPS (10 mg/kg) for 24 h to induce AKI. Besides, the Boston University mouse proximal tubular cell lines were stimulated with LPS (10 µg/ml) for 8 h to investigate the role of miR-214-5p in vitro. To inhibit adenosine monophosphate-activated protein kinase (AMPK), compound C (CpC) was used in vivo. For glucagon-like peptide-1 receptor (GLP-1R) silence, cells were transfected with the small interfering RNA against GLP-1R. miR-214-5p level was upregulated in LPS-treated kidneys and proximal tubular cell lines. The miR-214-5p antagomir reduced LPS-induced renal inflammation and oxidative stress, thereby preventing renal damage and dysfunction. In contrast, the miR-214-5p agomir aggravated LPS-induced inflammation, oxidative stress and AKI in vivo and in vitro. Mechanistically, we found that the miR-214-5p antagomir prevented septic AKI via activating AMPK and that CpC treatment completely abrogated its renoprotective effect in mice. Further detection showed that miR-214-5p directly bound to the 3'-untranslational region of GLP-1R to inhibit GLP-1R/AMPK axis. Our data identify miR-214-5p as a promising therapeutic candidate to treat sepsis-related AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Proteínas Quinases Ativadas por AMP/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Antagomirs , Feminino , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Sepse/complicações , Sepse/metabolismo
6.
Opt Lett ; 46(13): 3207-3210, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197417

RESUMO

We demonstrated a deep-red laser source by intracavity frequency-doubled crystalline Raman laser for the first time, to the best of our knowledge. The actively Q-switched 1314 nm Nd:LiYF4 laser was first converted to the eye-safe Raman laser using a KGd(WO4)2 (KGW) crystal, which was subsequently frequency-doubled in a bismuth borate crystal. Benefiting from the KGW bi-axial properties, the deep-red laser source was able to lase separately at two different spectral lines at 730 and 745 nm. Under an optimal repetition rate of 4 kHz, the maximum average powers of 1.7 and 2.0 W were attained with good beam quality of M2≈1.7. The corresponding pulse durations were determined to be 3.0 and 2.8 ns with the peak powers up to approximately 140 and 180 kW, respectively.

7.
Opt Express ; 28(24): 36046-36054, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379708

RESUMO

We demonstrated a narrowband eye-safe intracavity Raman laser by incorporating a fused silica etalon into the fundamental resonator. The KGd(WO4)2 (KGW) Raman laser was pumped by an actively Q-switched Nd:YLF laser at 1314 nm. Thanks to the KGW bi-axial properties, two distinct eye-safe Raman lasers operating at 1461 and 1490 nm were obtained separately by rotation of the KGW crystal. At an optimized pulse repetition frequency of 4 kHz, the maximum average output powers of 3.6 and 4.0 W were achieved with the peak powers up to approximately 330 and 480 kW, respectively. The eye-safe Stokes emissions were narrow linewidth (∼0.05 nm FWHM; measurement limited) and near diffraction limited (M2 < 1.4). The powerful narrowband eye-safe Raman lasers are of interest for applications as diverse as laser range finding, scanning lidar and remote sensing.

8.
Opt Express ; 28(6): 8802-8810, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225498

RESUMO

An actively Q-switched eye-safe orthogonally-polarized dual-wavelength intracavity Raman laser was demonstrated for the first time, to the best of our knowledge. The gain balanced dual-wavelength operation at 1314 and 1321 nm within an in-band pumped Nd:YLF laser was realized by slightly titling the cavity mirrors. Owing to the KGW bi-axial properties, two sets of simultaneous orthogonally-polarized dual-wavelength Raman lasers at 1470, 1490 nm and 1461, 1499 nm were achieved by simply rotating the KGW crystal for 90°, respectively. With an incident pump power of 30 W and an optimized pulse repetition frequency of 5 kHz, the maximum dual-wavelength Raman output powers of 2.6 and 2.4 W were obtained with the pulse widths of 5.8 and 6.3 ns, respectively, corresponding to the peak powers up to 89.7 and 76.5 kW.

9.
Opt Lett ; 45(24): 6715-6718, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325877

RESUMO

A single-longitudinal-mode crystalline Raman laser in the 1.7 µm wave band was reported for the first time, to the best of our knowledge. The YVO4 Raman laser, which was intracavity-pumped by an actively Q-switched 1314 nm Nd:YLF laser, demonstrated the cascaded Stokes oscillation at 1715 nm. By inserting an etalon in the fundamental resonator, linewidth narrowing and power scaling of the second-Stokes laser were realized based on the spatial-hole-burning-free Raman gain. With an optimal pulse repetition frequency of 4 kHz, the maximum single-longitudinal-mode average output power of 1.8 W was acquired with the spectrum linewidth of ∼340MHz. Further increasing the incident pump power, the second-Stokes laser transitioned to multimode regime, and the maximum average output power reached 2.7 W with the peak power as high as ∼380kW.

10.
Crit Care ; 24(1): 421, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660520

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global spread of coronavirus disease (COVID-19). Our understanding of the impact this virus has on the nervous system is limited. Our review aims to inform and improve decision-making among the physicians treating COVID-19 by presenting a systematic analysis of the neurological manifestations experienced within these patients. METHODS: Any study, released prior to May 20, 2020, that reported neurological manifestations in patients infected by SARS-CoV-2 was systematically reviewed using the PRISMA (Preferred Reporting Items for Systemic review and Meta-Analysis) statement. RESULTS: Our systematic review included data from 37 articles: twelve retrospective studies, two prospective studies, and the rest case reports/series. The most commonly reported neurological manifestations of COVID-19 were myalgia, headache, altered sensorium, hyposmia, and hypogeusia. Uncommonly, COVID-19 can also present with central nervous system manifestations such as ischemic stroke, intracerebral hemorrhage, encephalo-myelitis, and acute myelitis, peripheral nervous manifestations such as Guillain-Barré syndrome and Bell's palsy, and skeletal muscle manifestations such as rhabdomyolysis. CONCLUSION: While COVID-19 typically presents as a self-limiting respiratory disease, it has been reported in up to 20% of patients to progress to severe illness with multi-organ involvement. The neurological manifestations of COVID-19 are not uncommon, but our study found most resolve with treatment of the underlying infection. Although the timeliness of this review engages current challenges posed by the COVID-19 pandemic, readers must not ignore the limitations and biases intrinsic to an early investigation.


Assuntos
Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/virologia , Pneumonia Viral/complicações , COVID-19 , Humanos , Pandemias
11.
Opt Lett ; 44(15): 3705-3708, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368948

RESUMO

In this Letter, the frequency expansion of an orthogonally polarized dual-wavelength laser, based on the cascaded stimulated Raman scattering, was demonstrated for the first time, to the best of our knowledge. The dual-wavelength fundamental laser generated from two separate Nd:YLF crystals was free of gain competition. Integrating the benefit of the two different orthogonally polarized Raman gain peaks in the KGd(WO4)2 (KGW) crystal, two sets of first-Stokes orthogonally polarized dual-wavelength Raman lasers were first achieved by rotating the Raman crystal for 90°. Furthermore, by simply replacing the Raman output coupler, we attained another two sets of second-Stokes orthogonally polarized dual-wavelength Raman lasers via the cascaded Raman shift. At a pulse repetition frequency of 5 kHz, the maximum first-Stokes and second-Stokes dual-wavelength Raman output powers were 3.12 and 2.09 W, with the combined peak powers of approximately 240 and 290 kW, respectively.

12.
Chemistry ; 25(28): 6907-6910, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30958593

RESUMO

A transient and recyclable C-H iodination has been designed for the synthesis of isoflavonoids through the domino reactions of o-hydroxyphenyl enaminones and aryl boronic acids in the presence of catalytic KI and Pd catalyst. Instead of the conventional cross-coupling strategy employing pre-halogenated substrates, this method transforms raw C-H bond by means of a transient C-H halogenation to smoothly relay the subsequent C-arylation. Consequently, such a method avoids the pre-functionalization for C-halogen bond installation as well as the generation of stoichiometric halogen-containing waste following the cross-coupled product, disclosing an intriguing new coupling protocol to forge the C-C bond in the virgin area between classical C-X (X=halogen) bond cross coupling and the C-H activation.

13.
Fish Physiol Biochem ; 45(4): 1431-1443, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267430

RESUMO

Connective tissue growth factor (ctgf) is involved in the proliferation, migration, adhesion of cell, and the constituent of extracellular matrix, which plays an important role in embryogenesis, angiogenesis, wound repair, and fibrosis diseases. In this study, the cDNA sequence of grass carp ctgf gene was cloned by rapid amplification of cDNA ends (RACE) method; then, the characteristics of this gene and the predicted protein sequence were analyzed by bioinformatics methods, and the tissue differential expression pattern was detected by the quantitative real-time PCR. The results showed that the grass carp ctgf gene has a full-length of 2223 bp, encoding 343 amino acids. The deduced CTGF protein is a hydrophilic and secretary protein with a molecular mass of 37,978.2 Da and an isoelectric point of 8.22. The signal peptide locates between residue positions 1 and 22 of the polypeptide chain. The protein contains α-helix, ß-strand, and loops. The CTGF protein of grass carp shows a homology of 98%, 96%, 91%, and 91% with Wuchang bream (Megalobrama amblycephala), zebrafish (Danio rerio), common carp (Cyprinus carpio), and Mexican tetra (Astyanax mexicanus). The grass carp ctgf gene expressed significantly higher in blood and spleen than that in other tissues (P < 0.05). The low expression tissues included the heart, gill, skin, muscle, kidney, brain, and intestinal, and the lowest expression tissue was the liver. The results are consistent with the function of this gene.


Assuntos
Carpas/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Proteínas de Peixes/genética , Animais , Clonagem Molecular , Fator de Crescimento do Tecido Conjuntivo/sangue , DNA Complementar/genética , Proteínas de Peixes/sangue , Expressão Gênica , Baço/metabolismo
14.
Rheumatol Int ; 37(3): 423-434, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27866247

RESUMO

Juvenile idiopathic arthritis (JIA) is common childhood rheumatic disease harming children health. However, there is still lack of effective biomarkers for diagnosis JIA at early onset. We aim to construct a classification model to predict JIA disease. The peripheral blood gene expression profile data of JIA were downloaded from GEO database. We compared and analyzed differentially expressed genes (DEGs) between different JIA samples through Pearson's correlation coefficient method and unsupervised clustering analysis. Diagnostic model were constructed based on the deviation pathway through bioinformatics method. Eighteen specific correlated DEGs were obtained, but the correlations altered in different disease states. Although most JIA and control samples were clustered by unsupervised clustering analysis, respectively, a few JIA samples could not be clustered well. Four co-expression networks were next constructed with gene connections dynamically altered under variable conditions. Eight signaling pathways were significantly enriched including B/T cell receptor, ErbB and MAPK signaling pathways. The deviation scores of pathways were calculated. Applying these eight signaling pathways as feature to construct a classification model could predict JIA disease with high accuracies. Our data provide some light into pathogenic mechanism of JIA, the specific gene sets and the related signaling pathways may be potential biomarkers for diagnosis or therapeutic targets of JIA.


Assuntos
Artrite Juvenil/genética , Biologia Computacional/métodos , Expressão Gênica , Artrite Juvenil/diagnóstico , Biomarcadores/sangue , Criança , Análise por Conglomerados , Marcadores Genéticos , Humanos , Sistema de Sinalização das MAP Quinases
15.
Fish Physiol Biochem ; 43(5): 1279-1287, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28474195

RESUMO

Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit, oxygen consumption rate (MO 2), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p < 0.05). The U crit was plotted as a function of T and curve-fitting allowed calculation of the optimal swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit. In trial 2, MO 2 increased more slowly, but continuously, to U crit. TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.


Assuntos
Metabolismo Energético/fisiologia , Fadiga , Peixes/fisiologia , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Temperatura , Animais
16.
Mol Cell Biochem ; 415(1-2): 157-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27003285

RESUMO

Hepatocellular carcinoma is the third most common cause of cancer death worldwide. Novel early detection biomarkers and efficacious therapy strategies are needed. Macrophages recruited from circulation monocytes are the major component of solid cancer and play an important role in the carcinogenesis. Whether overexpression of L-12 in monocytes could induce the phenotype directional differentiation into tumoricidal M1 macrophages and inhibit HCC growth in tumor microenvironment was investigated in this study. For the establishment of the monocyte/IL-12 and polarization of M1-like macrophage, the IL-12 overexpressing recombinant monocyte/IL-12 cells were established by infecting with pAd5F35-CMV/IL-12 adenovirus and co-cultured with HCC SMMC-7721 and Hep3B cells. It was found that the phenotype of monocyte/IL-12 polarized to M1-like macrophages with CD197high IL-12high CD206low IL-10low, and decreased expression of TGF-ß, VEGF-A, and MMP-9. In order to explore the mechanism underlying the macrophages polarization, we detected the Stat-3 pathway and its downstream transcription factor c-myc, and found that the p-Stat-3 and c-myc were down-regulated. To evaluate the effects of monocyte/IL-12 on inhibiting HCC growth, various assays including CCK8, flow cytometry, colony-forming and Transwell assays in vitro, and xenograft mouse models and immunohistochemical analyses in vivo were used to detect the HCC growth and relative markers. Treated with IL-12 overexpressing monocytes, the xenograft tumor growth was significantly inhibited in vivo. These results have proven that IL-12-overexpressed monocytes could directionally differentiate to M1-like macrophages through downregulation of Stat-3 and result in the inhibition of HCC growth.


Assuntos
Carcinoma Hepatocelular/patologia , Polaridade Celular , Regulação para Baixo , Interleucina-12/fisiologia , Neoplasias Hepáticas/patologia , Macrófagos/patologia , Fator de Transcrição STAT3/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Humanos , Invasividade Neoplásica
17.
Biochemistry ; 54(31): 4936-51, 2015 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-26171638

RESUMO

Cyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood. Here we report the biophysical and structural studies of c-di-AMP in complex with a bacterial cation-proton antiporter (CpaA) RCK (regulator of the conductance of K(+)) protein from Staphylococcus aureus (Sa). The crystal structure of the SaCpaA_RCK C-terminal domain (CTD) in complex with c-di-AMP was determined to a resolution of 1.81 Å. This structure revealed two well-liganded water molecules, each interacting with one of the adenine bases by a unique H2Olp-π interaction to stabilize the complex. Sequence blasting using the SaCpaA_RCK primary sequence against the bacterial genome database returned many CpaA analogues, and alignment of these sequences revealed that the active site residues are all well-conserved, indicating a universal c-di-AMP binding mode for CpaA_RCK. A proteoliposome activity assay using the full-length SaCpaA membrane protein indicated that c-di-AMP binding alters its antiporter activity by approximately 40%. A comparison of this structure to all other reported c-di-AMP-receptor complex structures revealed that c-di-AMP binds to receptors in either a "U-shape" or "V-shape" mode. The two adenine rings are stabilized in the inner interaction zone by a variety of CH-π, cation-π, backbone-π, or H2Olp-π interaction, but more commonly in the outer interaction zone by hydrophobic CH-π or π-π interaction. The structures determined to date provide an understanding of the mechanisms by which a single c-di-AMP can interact with a variety of receptor proteins, and how c-di-AMP binds receptor proteins in a special way different from that of c-di-GMP.


Assuntos
Antiporters/química , Proteínas de Bactérias/química , Fosfatos de Dinucleosídeos/química , Staphylococcus aureus/química , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Staphylococcus aureus/metabolismo
18.
Mol Cell Biochem ; 402(1-2): 157-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25563480

RESUMO

Interleukin-12 (IL-12), a member of interleukin family, plays a critical role in immune responses and anti-tumor activity. In this study, the effects of IL-12 on monocytic tumor cell lines differentiation to macrophagocyte and its likely mechanism was investigated. We examined the differentiation markers, morphological and functional changes, and possible mechanism in IL-12-treated THP-1 and U937 cells. It was found that IL-12 could up-regulated macrophage surface marker CD68 and CD11b expression in a time-dependent manner. Morphologically, after IL-12 treatment, THP-1 and U937 cells became round or irregular shape, even stretched many cell membrane protuberances; some cell nuclei became fuzzy or completely disappeared, and the chromatin appeared dense and cordlike. Furthermore, IL-12-induced monocytic tumor cell differentiation was accompanied by the growth arrest with G1-phase accumulation and S-phase reduction; apoptosis increased with anti-apoptosis protein Bcl-2 down-expression and pro-apoptosis protein Fas up-regulation, and enhanced phagocytosis function. The IL-12-induced macrophage differentiation of THP-1 and U937 cells was associated with the up-regulation of c-fms expression and the CSF-1R Tyr 809 site phosphorylation. These findings have revealed that IL-12 could induce monocytic tumor cells directional differentiation into macrophage-like cells, and its mechanism is possible connected with the up-regulation of c-fms expression and the phosphorylation of CSF-1R Tyr-809 site.


Assuntos
Diferenciação Celular , Interleucina-12/fisiologia , Macrófagos/fisiologia , Antígenos CD/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Endocitose , Humanos , Fagocitose , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
19.
Yao Xue Xue Bao ; 50(3): 261-71, 2015 Mar.
Artigo em Zh | MEDLINE | ID: mdl-26118103

RESUMO

p70 ribosomal protein S6 kinase (p70S6K), an important member of AGC family, is a kind of multifunctional Ser/Thr kinases, which plays an important role in mTOR signaling cascade. The p70 ribosomal protein S6 kinase is closely associated with diverse cellular processes such as protein synthesis, mRNA processing, glucose homeostasis, cell growth and apoptosis. Recent studies have highlighted the important role of S6K in cancer, which arose interests of scientific researchers for the design and discovery of anti-cancer agents. Herein, the mechanisms of S6K and available inhibitors are reviewed.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Antineoplásicos , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 997-1000, 2015 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-26197590

RESUMO

In order to explore the variation of CO2 concentration and soil respiration in soil profile, the nondispersive infrared (NDIR) spectroscopy technique was applied to continually estimate the soil CO2 concentration in different soil layers (the humus horizon, A-, B-, C-horizon) in situ. The main instrument used in this experiment was silicon-based nondispersive infrared sensor, which could work in severe environment. We collected the Measurement value by NDIR spectroscopy technique throughout 2013. The values of soil carbon flux in different soil layers were calculated based on the model of gradient method and calibrated by measuring with an automated soil CO2 efflux system (LI-8100). The results showed that: a vertical gradient for the carbon dioxide concentration in soil profile was found, and the concentration was highest in the deepest soil horizon. Moreover, A linear correlation between the soil CO2 effluxes was calculated based on model and measurement, and the model prediction correlation coefficient was 0.9069, 0.7185, 0.8382, and 0.9030 in the H-, A-, B-, and C-horizon, respectively. The roots of mean square error (RMSE) were 0.2067, 0.1041, 0.0156, and 0.0096 in the H-, A-, B-, and C-horizon, respectively. These results suggest that the gradient method based on the NDIR spectroscopy technique can be successfully used to measure soil CO2 efflux in different soil layers, which reveal that diffusion and convection transport CO2 between the soil layers. It is a promising sensor for detecting CO2 concentration in soil profile, providing the basic data for calculating the global carbon in soil profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA