Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(19): 9206-9217, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439711

RESUMO

Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histona-Lisina N-Metiltransferase/metabolismo , Transcrição Gênica , Animais , Ataxina-1/metabolismo , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Análise por Conglomerados , Células-Tronco Embrionárias/citologia , Ativação Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Modelos Biológicos , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Fatores de Transcrição SOXB1/metabolismo
2.
Genome Biol ; 24(1): 59, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Animais , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Noncoding RNA ; 2(4)2016 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29657272

RESUMO

Set7 is a key regulatory enzyme involved in the methylation of lysine residues of histone and non-histone proteins. This lysine methyltransferase is induced during stem cell differentiation and regulates lineage specific gene transcription and cell fate. In this article we discuss recent experimental evidence identifying regulatory targets under the control of Set7 as well as emerging evidence of regulation in stem cell differentiation. Furthermore, we discuss the function of non-coding RNAs regulated by Set7 implicated in cell plasticity.

4.
Epigenetics ; 10(5): 418-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25941940

RESUMO

Pharmacological histone deacetylase (HDAC) inhibitors attenuate pathological cardiac remodeling and hypertrophic gene expression; yet, the direct histone targets remain poorly characterized. Since the inhibition of HDAC activity is associated with suppressing hypertrophy, we hypothesized histone acetylation would target genes implicated in cardiac remodeling. Trichostatin A (TSA) regulates cardiac gene expression and attenuates transverse aortic constriction (TAC) induced hypertrophy. We used chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq) to map, for the first time, genome-wide histone acetylation changes in a preclinical model of pathological cardiac hypertrophy and attenuation of pathogenesis with TSA. Pressure overload-induced cardiac hypertrophy was associated with histone acetylation of genes implicated in cardiac contraction, collagen deposition, inflammation, and extracellular matrix identified by ChIP-seq. Gene set enrichment analysis identified NF-kappa B (NF-κB) transcription factor activation with load induced hypertrophy. Increased histone acetylation was observed on the promoters of NFκB target genes (Icam1, Vcam1, Il21r, Il6ra, Ticam2, Cxcl10) consistent with gene activation in the hypertrophied heart. Surprisingly, TSA attenuated pressure overload-induced cardiac hypertrophy and the suppression of NFκB target genes by broad histone deacetylation. Our results suggest a mechanism for cardioprotection subject to histone deacetylation as a previously unknown target, implicating the importance of inflammation by pharmacological HDAC inhibition. The results of this study provides a framework for HDAC inhibitor function in the heart and argues the long held views of acetylation is subject to more flexibility than previously thought.


Assuntos
Acetilação/efeitos dos fármacos , Cardiomegalia/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Animais , Aorta/cirurgia , Cardiomegalia/genética , Cardiomegalia/cirurgia , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA