RESUMO
Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.
Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.
Assuntos
Cardiidae , Metilação de DNA , Epigênese Genética , Metilação de DNA/genética , Animais , Cardiidae/genética , Ilhas de CpG/genética , Genoma/genética , Neoplasias/genética , Neoplasias/patologiaRESUMO
The dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron-BA.1 variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the United States became increasingly significant. The number of detected introductions varied from 96 and 101 for Alpha and Delta to 39 for Omicron-BA.1. Most of these introductions left a low number of descendants (<10), suggesting a limited impact on the evolution of the pandemic in Galicia. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Assuntos
COVID-19 , SARS-CoV-2 , Espanha/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , SARS-CoV-2/genética , Genoma Viral , Filogenia , PandemiasRESUMO
Nodal peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) remains a diagnosis encompassing a heterogenous group of PTCL cases not fitting criteria for more homogeneous subtypes. They are characterized by a poor clinical outcome when treated with anthracycline-containing regimens. A better understanding of their biology could improve prognostic stratification and foster the development of novel therapeutic approaches. Recent targeted and whole exome sequencing studies have shown recurrent copy number abnormalities (CNAs) with prognostic significance. Here, investigating 5 formalin-fixed, paraffin embedded cases of PTCL-NOS by whole genome sequencing (WGS), we found a high prevalence of structural variants and complex events, such as chromothripsis likely responsible for the observed CNAs. Among them, CDKN2A and PTEN deletions emerged as the most frequent aberration, as confirmed in a final cohort of 143 patients with nodal PTCL. The incidence of CDKN2A and PTEN deletions among PTCL-NOS was 46% and 26%, respectively. Furthermore, we found that co-occurrence of CDKN2A and PTEN deletions is an event associated with PTCL-NOS with absolute specificity. In contrast, these deletions were rare and never co-occurred in angioimmunoblastic and anaplastic lymphomas. CDKN2A deletion was associated with shorter overall survival in multivariate analysis corrected by age, IPI, transplant eligibility and GATA3 expression (adjusted HR =2.53; 95% CI 1.006-6.3; p=0.048). These data suggest that CDKN2A deletions may be relevant for refining the prognosis of PTCL-NOS and their significance should be evaluated in prospective trials.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Linfoma de Células T Periférico , Antraciclinas , Estudos de Coortes , Deleção de Genes , Humanos , Linfoma de Células T Periférico/diagnóstico , Linfoma de Células T Periférico/genética , PTEN Fosfo-Hidrolase , Prognóstico , Estudos ProspectivosRESUMO
Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.
Assuntos
Linhagem da Célula , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia , Androgênios/deficiência , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise Mutacional de DNA , Progressão da Doença , Epigênese Genética , Genes Supressores de Tumor , Humanos , Masculino , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/genéticaRESUMO
Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.
Assuntos
Marsupiais/fisiologia , Neoplasias/veterinária , Alelos , Animais , Quebra Cromossômica , Análise Citogenética , Éxons/genética , Genoma , Geografia , Haplótipos/genética , Cariotipagem , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Tasmânia , Cromossomo X/genéticaRESUMO
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.
Assuntos
DNA Mitocondrial/genética , Genoma Humano , Genoma Mitocondrial/genética , Neoplasias/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/genética , Cromossomos/genética , Variações do Número de Cópias de DNA , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Análise de Sequência de DNARESUMO
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets.
Assuntos
Biomarcadores Tumorais/genética , Rearranjo Gênico , Genoma Humano , Mutação/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Adulto JovemRESUMO
Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.
Assuntos
Genoma Humano/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Análise Mutacional de DNA , Humanos , Carioferinas/genética , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Receptor Notch1/genética , Receptores Citoplasmáticos e Nucleares/genética , Reprodutibilidade dos Testes , Proteína Exportina 1RESUMO
In the advanced renal cell carcinoma (RCC) scenario, there are no consistent biomarkers to predict the clinical benefit patients derived from immune checkpoint blockade (ICB). Taking this into consideration, herein, we conducted a retrospective study in order to develop and validate a gene expression score for predicting clinical benefit to the anti-PD-1 antibody nivolumab in the context of patients diagnosed with advanced clear cell RCC enrolled in the CheckMate-009, CheckMate-010, and CheckMate-025 clinical trials. First, a three-gene expression score (3GES) with prognostic value for overall survival integrating HMGA1, NUP62, and ARHGAP42 transcripts was developed in a cohort of patients treated with nivolumab. Its prognostic value was then validated in the TCGA-KIRC cohort. Second, the predictive value for nivolumab was confirmed in a set of patients from the CheckMate-025 phase 3 clinical trial. Lastly, we explored the correlation of our 3GES with different clinical, molecular, and immune tumor characteristics. If the results of this study are definitively validated in other retrospective and large-scale, prospective studies, the 3GES will represent a valuable tool for guiding the design of ICB-based clinical trials in the aRCC scenario in the near future.
Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Nivolumabe , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Neoplasias Renais/imunologia , Nivolumabe/uso terapêutico , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Retrospectivos , Resultado do TratamentoRESUMO
The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
RESUMO
Deficiency in DNA MMR activity results in tumors with a hypermutator phenotype, termed microsatellite instability (MSI). Beyond its utility in Lynch syndrome screening algorithms, today MSI has gained importance as predictive biomarker for various anti-PD-1 therapies across many different tumor types. Over the past years, many computational methods have emerged to infer MSI using either DNA- or RNA-based approaches. Considering this together with the fact that MSI-high tumors frequently exhibit a hypermethylated phenotype, herein we developed and validated MSIMEP, a computational tool for predicting MSI status from microarray DNA methylation tumor profiles of colorectal cancer samples. We demonstrated that MSIMEP optimized and reduced models have high performance in predicting MSI in different colorectal cancer cohorts. Moreover, we tested its consistency in other tumor types with high prevalence of MSI such as gastric and endometrial cancers. Finally, we demonstrated better performance of both MSIMEP models vis-à-vis a MLH1 promoter methylation-based one in colorectal cancer.
RESUMO
Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.
Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução ClonalAssuntos
Transformação Celular Neoplásica/genética , Mutagênese/genética , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Sobrevivência Celular , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Quebras de DNA , Variações do Número de Cópias de DNA/genética , Reparo do DNA , Progressão da Doença , Genes Neoplásicos/genética , Humanos , Leucemia/genética , Recombinação Genética/genéticaRESUMO
Current somatic mutation callers are biased against repetitive regions, preventing the identification of potential driver alterations in these loci. We developed a mutation caller for repetitive regions, and applied it to study repetitive non protein-coding genes in more than 2200 whole-genome cases. We identified a recurrent mutation at position c.28 in the gene encoding the snRNA U2. This mutation is present in B-cell derived tumors, as well as in prostate and pancreatic cancer, suggesting U2 c.28 constitutes a driver candidate associated with worse prognosis. We showed that the GRCh37 reference genome is incomplete, lacking the U2 cluster in chromosome 17, preventing the identification of mutations in this gene. Furthermore, the 5'-flanking region of WDR74, previously described as frequently mutated in cancer, constitutes a functional copy of U2. These data reinforce the relevance of non-coding mutations in cancer, and highlight current challenges of cancer genomic research in characterizing mutations affecting repetitive genes.
RESUMO
Pan-Immune-Inflammation Value (PIV) has been recently proposed as a new blood-based prognostic biomarker in metastatic colorectal cancer (mCRC). Herein we aimed to validate its prognostic significance and to evaluate its utility for disease monitoring in patients with mCRC receiving first-line chemotherapy. We conducted a single-centre retrospective study involving 130 previously untreated mCRC patients under first-line standard chemotherapy in a real-world scenario. PIV was calculated as (neutrophil count × platelet count × monocyte count)/lymphocyte count at three different time-points: baseline, week 4 after therapy initiation, and at disease progression. We analyzed the influence of baseline PIV on overall survival (OS), progression-free survival (PFS), disease control rate (DCR), and overall response rate (ORR). We also explored the utility of PIV dynamics for disease monitoring. Baseline PIV high was significantly associated with worse OS in univariate [hazard ratio (HR) = 2.10, 95% CI, 1.41-3.15; p = 0.000299] and multivariate (HR = 1.82, 95% CI, 1.15-2.90; p = 0.011) analyses. Baseline PIV was also associated with worse PFS in univariate (HR = 2.04, 95% CI, 1.40-2.97; p = 0.000187) and multivariate (HR = 1.56, 95% CI, 1.05-2.31; p = 0.026) analyses. Baseline PIV was not correlated either with DCR or ORR. Regarding PIV dynamics, there was a statistically significant increase from week 4 to disease progression (p = 0.0003), which was at the expense of cases with disease control as best response (p < 0.0001). In conclusion, this study validates the prognostic significance of baseline PIV in patients with mCRC receiving first-line standard chemotherapy in a real-world scenario. Moreover, it suggests the potential utility of PIV monitoring to anticipate the disease progression among those patients who achieve initial disease control.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Inflamação , Prognóstico , Estudos RetrospectivosRESUMO
Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of high-quality haplotype-resolved human genomes without parent-child trio data. We present 64 assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype assemblies (average minimum contig length needed to cover 50% of the genome: 26 million base pairs) integrate all forms of genetic variation, even across complex loci. We identified 107,590 structural variants (SVs), of which 68% were not discovered with short-read sequencing, and 278 SV hotspots (spanning megabases of gene-rich sequence). We characterized 130 of the most active mobile element source elements and found that 63% of all SVs arise through homology-mediated mechanisms. This resource enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1526 expression quantitative trait loci as well as SV candidates for adaptive selection within the human population.
Assuntos
Variação Genética , Genoma Humano , Haplótipos , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Sequências Repetitivas Dispersas , Masculino , Grupos Populacionais/genética , Locos de Características Quantitativas , Retroelementos , Análise de Sequência de DNA , Inversão de Sequência , Sequenciamento Completo do GenomaRESUMO
Most cancers are characterized by the somatic acquisition of genomic rearrangements during tumour evolution that eventually drive the oncogenesis. Here, using multiplatform sequencing technologies, we identify and characterize a remarkable mutational mechanism in human hepatocellular carcinoma caused by Hepatitis B virus, by which DNA molecules from the virus are inserted into the tumour genome causing dramatic changes in its configuration, including non-homologous chromosomal fusions, dicentric chromosomes and megabase-size telomeric deletions. This aberrant mutational mechanism, present in at least 8% of all HCC tumours, can provide the driver rearrangements that a cancer clone requires to survive and grow, including loss of relevant tumour suppressor genes. Most of these events are clonal and occur early during liver cancer evolution. Real-time timing estimation reveals some HBV-mediated rearrangements occur as early as two decades before cancer diagnosis. Overall, these data underscore the importance of characterising liver cancer genomes for patterns of HBV integration.