Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
J Biol Chem ; 298(12): 102713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403858

RESUMO

Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.


Assuntos
Colágeno , Doenças do Tecido Conjuntivo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Humanos , Colágeno/metabolismo , Glicosilação , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional
3.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047755

RESUMO

AMACO (VWA2 protein), secreted by epithelial cells, is strongly expressed at basement membranes when budding or invagination occurs in embryos. In skin, AMACO associates with proteins of the Fraser complex, which form anchoring cords. These, during development, temporally stabilize the dermal-epidermal junction, pending the formation of collagen VII-containing anchoring fibrils. Fraser syndrome in humans results if any of the core members of the Fraser complex (Fras1, Frem1, Frem2) are mutated. Fraser syndrome is characterized by subepidermal blistering, cryptophthalmos, and syndactyly. In an attempt to determine AMACO function, we generated and characterized AMACO-deficient mice. In contrast to Fraser complex mutant mice, AMACO-deficient animals lack an obvious phenotype. The mutually interdependent basement membrane deposition of the Fraser complex proteins, and the formation of anchoring cords, are not affected. Furthermore, hair follicle development in newborn AMACO-deficient mice showed no gross aberration. Surprisingly, it appears that, while AMACO is a component of the anchoring cords, it is not essential for their formation or function.


Assuntos
Proteínas da Matriz Extracelular , Síndrome de Fraser , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Síndrome de Fraser/metabolismo , Pele/metabolismo
4.
Dev Biol ; 470: 108-120, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248111

RESUMO

Growth of the musculoskeletal system requires precise coordination between bone, muscle, and tendon during development. Insufficient elongation of the muscle-tendon unit relative to bone growth results in joint contracture, a condition characterized by reduction or complete loss of joint range of motion. Here we establish a novel murine model of joint contracture by targeting Smad4 for deletion in the tendon cell lineage using Scleraxis-Cre (ScxCre). Smad4ScxCre mutants develop a joint contracture shortly after birth. The contracture is stochastic in direction and increases in severity with age. Smad4ScxCre mutant tendons exhibited a stable reduction in cellularity and a progressive reduction in extracellular matrix volume. Collagen fibril diameters were reduced in the Smad4ScxCre mutants, suggesting a role for Smad4 signaling in the regulation of matrix accumulation. Although ScxCre also has sporadic activity in both cartilage and muscle, we demonstrate an essential role for Smad4 loss in tendons for the development of joint contractures. Disrupting the canonical TGFß-pathway in Smad2;3ScxCre mutants did not result in joint contractures. Conversely, disrupting the BMP pathway by targeting BMP receptors (Alk3ScxCre/Alk6null) recapitulated many features of the Smad4ScxCre contracture phenotype, suggesting that joint contracture in Smad4ScxCre mutants is caused by disruption of BMP signaling. Overall, these results establish a model of murine postnatal joint contracture and a role for BMP signaling in tendon elongation and extracellular matrix accumulation.


Assuntos
Contratura/metabolismo , Contratura/patologia , Proteína Smad4/metabolismo , Tendões/crescimento & desenvolvimento , Animais , Desenvolvimento Ósseo , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Linhagem da Célula , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Membro Anterior , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais , Proteína Smad4/genética , Tendões/citologia , Tendões/embriologia , Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
J Biol Chem ; 296: 100453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631195

RESUMO

Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.


Assuntos
Colágeno Tipo I/metabolismo , Colágeno Tipo V/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo V/genética , Retículo Endoplasmático Rugoso/metabolismo , Hidroxilação , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Colágeno-Prolina Dioxigenase/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética
6.
Development ; 142(14): 2431-41, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062940

RESUMO

The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/embriologia , Tendões/embriologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cartilagem/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Articulação Metacarpofalângica/patologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Músculo Esquelético/metabolismo , Fenótipo , Fatores de Transcrição SOX9/genética , Tendões/metabolismo
7.
Connect Tissue Res ; 59(4): 295-308, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28937836

RESUMO

PURPOSE: Tendon injuries are clinically challenging due to poor healing. A better understanding of the molecular events that regulate tendon differentiation would improve current strategies for repair. The mouse model system has been instrumental to tendon studies and several key molecules were initially established in mouse. However, the study of gene function has been limited by the absence of a standard in vitro tendon system for efficiently testing multiple mutations, physical manipulations, and mis-expression. The purpose of this study is therefore to establish such a system. METHODS: We adapted an existing design for generating three-dimensional (3D) tendon constructs for use with mouse progenitor cells harboring the ScxGFP tendon reporter and the Rosa26-TdTomato Cre reporter. Using these cells, we optimized the parameters for construct formation, inducing tenogenesis via transforming growth factor-ß2 (TGFß2), and genetic recombination via an adenovirus encoding Cre recombinase. Finally, for proof of concept, we used Smad4 floxed cells and tested the robustness of the system for gene knockdown. RESULTS: We found that TGFß2 treatment induced a tenogenic phenotype depending on the timing of initiation. Addition of TGFß2 after 3D "tensioning" enhanced tendon differentiation. Interestingly, while TGFß2-induced proliferation depended on Smad4, tenogenic parameters such as ScxGFP expression and fibril diameter were independent of Smad4. CONCLUSIONS: Our results demonstrate the feasibility of this optimized system for harnessing the power of mouse genetics for in vitro applications.


Assuntos
Imageamento Tridimensional , Modelos Biológicos , Organogênese , Tendões/crescimento & desenvolvimento , Adenoviridae/metabolismo , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos , Mutação/genética , Fenótipo , Proteoglicanas/metabolismo , Reprodutibilidade dos Testes , Proteína Smad4/metabolismo , Tendões/citologia , Tendões/ultraestrutura , Fator de Crescimento Transformador beta2/farmacologia
8.
PLoS Genet ; 11(6): e1005340, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114882

RESUMO

Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can sequester BMP complexes in a latent state.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas dos Microfilamentos/genética , Doenças Musculares/genética , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Creatina Quinase/sangue , Feminino , Fibrilina-1 , Fibrilina-2 , Fibrilinas , Regulação da Expressão Gênica , Deformidades Congênitas dos Membros/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/anormalidades , Músculo Esquelético/patologia , Doenças Musculares/fisiopatologia , Distrofias Musculares/genética , Técnicas de Cultura de Órgãos , Transdução de Sinais/genética
9.
PLoS Genet ; 8(1): e1002425, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22242013

RESUMO

Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFß signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFß signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes.


Assuntos
Matriz Extracelular/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Deleção de Sequência/genética , Síndrome de Weill-Marchesani/genética , Proteínas ADAMTS , Adolescente , Adulto , Animais , Sítios de Ligação , Microambiente Celular , Éxons , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrilina-1 , Fibrilinas , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Masculino , Síndrome de Marfan/genética , Camundongos , Camundongos Transgênicos , Microfibrilas/ultraestrutura , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Anormalidades da Pele/genética , Anormalidades da Pele/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
10.
PLoS One ; 19(5): e0302991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722855

RESUMO

Recessive dystrophic epidermolysis bullosa is a rare genodermatosis caused by a mutation of the Col7a1 gene. The Col7a1 gene codes for collagen type VII protein, a major component of anchoring fibrils. Mutations of the Col7a1 gene can cause aberrant collagen type VII formation, causing an associated lack or absence of anchoring fibrils. This presents clinically as chronic blistering, scarring, and fibrosis, often leading to the development of cutaneous squamous cell carcinoma. Patients also experience persistent pain and pruritus. Pain management and supportive bandaging remain the primary treatment options. The pathology of recessive dystrophic epidermolysis bullosa was first described in the 1980s, and there has since been a multitude of encouraging treatment options developed. However, in vivo research has been hindered by inadequate models of the disease. The various mouse models in existence possess longevity and surface area constraints, or do not adequately model a normal human disease state. In this paper, we describe a novel rat model of recessive dystrophic epidermolysis bullosa that offers an alternative to previous murine models. An 8-base pair deletion was induced in the Col7a1 gene of Lewis rats, which was subsequently found to cause a premature stop codon downstream. Homozygous mutants presented with a fragile and chronically blistered phenotype postnatally. Further histological analysis revealed subepidermal clefting and the absence of anchoring fibrils. The generation of this novel model offers researchers an easily maintained organism that possesses a larger surface area for experimental topical and transfused therapies to be tested, which may provide great utility in the future study of this debilitating disease.


Assuntos
Colágeno Tipo VII , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica , Mutação da Fase de Leitura , Fenótipo , Colágeno Tipo VII/genética , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Ratos , Genes Recessivos , Ratos Endogâmicos Lew , Vesícula/genética , Vesícula/patologia , Pele/patologia , Masculino
11.
Sci Rep ; 14(1): 9495, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664570

RESUMO

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Assuntos
Diferenciação Celular , Proliferação de Células , Tendões , Tenócitos , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Tendões/citologia , Tendões/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/citologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos
12.
Matrix Biol ; 123: 17-33, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683955

RESUMO

Although abnormal TGFß signaling is observed in several heritable forms of thoracic aortic aneurysms and dissections including Marfan syndrome, its precise role in aortic disease progression is still disputed. Using a mouse genetic approach and quantitative isobaric labeling proteomics, we sought to elucidate the role of TGFß signaling in three Fbn1 mutant mouse models representing a range of aortic disease from microdissection (without aneurysm) to aneurysm (without rupture) to aneurysm and rupture. Results indicated that reduced TGFß signaling and increased mast cell proteases were associated with microdissection. In contrast, increased abundance of extracellular matrix proteins, which could be reporters for positive TGFß signaling, were associated with aneurysm. Marked reductions in collagens and fibrillins, and increased TGFß signaling, were associated with aortic rupture. Our data indicate that TGFß signaling performs context-dependent roles in the pathogenesis of thoracic aortic disease.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Humanos , Aneurisma da Aorta Torácica/genética , Fibrilina-1/genética , Fibrilinas , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Matrix Biol ; 110: 151-173, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525525

RESUMO

Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFß signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFß signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFß signaling partially prevented ASD. Notably, we identified distinct roles for TGFß1 and TGFß2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFß signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFß signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.


Assuntos
Colágeno Tipo IV/metabolismo , Anormalidades do Olho , Animais , Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Olho/metabolismo , Anormalidades do Olho/metabolismo , Camundongos , Mutação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
14.
J Invest Dermatol ; 142(11): 2940-2948.e2, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35613627

RESUMO

AMACO (VWA2 protein) is a basement membrane-associated protein secreted by epithelial cells. It is strongly expressed when invagination or budding occurs during development. AMACO associates with the Fraser complex, which when mutated causes Fraser syndrome, characterized by subepidermal blistering, cryptophthalmos, and syndactyly. The core Fraser complex proteins FRAS1, FREM1, and FREM2 localize at the dermal‒epidermal junction and mediate adhesion to the underlying dermis during embryonic development. Earlier transmission electron microscopy studies of adult mouse skin showed clustered AMACO deposition below the lamina densa. In this study, we report a distinct cord-like suprastructure in the neonate dermis to which AMACO- and Fraser complex‒associated proteins contribute. We propose anchoring cords to designate the suprastructure. Anchoring cords have a diameter of 60 nm when immunolabeled, originate from the basement membrane, and extend several microns into the dermis. In normal skin, they are evident after immunogold electron microscopy and are strikingly appreciated in thicker sections. In recessive dystrophic epidermolysis bullosa skin, they are directly visible where collagen VII anchoring fibrils are ablated. Immunofluorescence and coimmunoprecipitation of skin extracts identify a direct interaction of FREM2 and AMACO.


Assuntos
Epidermólise Bolhosa Distrófica , Proteínas da Matriz Extracelular , Camundongos , Animais , Gravidez , Feminino , Proteínas da Matriz Extracelular/metabolismo , Pele/metabolismo , Membrana Basal/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Colágeno/metabolismo , Proteínas de Membrana/metabolismo
15.
Curr Eye Res ; 47(1): 79-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143713

RESUMO

PURPOSE: Primary open-angle glaucoma (POAG) is a complex heterogeneous disease. While several POAG genes have been identified, a high proportion of estimated heritability remains unexplained. Elevated intraocular pressure (IOP) is a leading POAG risk factor and dysfunctional extracellular matrix (ECM) in the trabecular meshwork (TM) contributes to elevated IOP. In this study, we sought to identify missense variants in ECM genes that correlate with ocular hypertensive POAG. METHODS: Whole-genome sequencing was used to identify genetic variants in five members of a large POAG family (n = 68) with elevated IOP. The remaining family members were screened by Sanger sequencing. Unrelated normal (NTM) and glaucomatous (GTM) cells were sequenced for the identified variants. The ECM protein levels were determined by Western immunoblotting and confocal and electron microscopy investigated ECM ultrastructural organization. RESULTS: Three ECM gene variants were significantly associated with POAG or elevated IOP in a large POAG pedigree. These included rs2228262 (N700S; thrombospondin-1 (THBS1, TSP1)), rs112913396 (D563 G; collagen type VI, alpha 3 (COL6A3)) and rs34759087 (E987K; laminin subunit beta 2 (LAMB2)). Screening of unrelated TM cells (n = 27) showed higher prevalence of the THBS1 variant but not the LAMB2 variant, in GTM cells (39%) than NTM cells (11%). The rare COL6A3 variant was not detected. TSP1 protein was upregulated and COL6A3 was down-regulated in TM cells with N700S subject to mechanical stretch, an in vitro method that mimics elevated IOP. Immunofluorescence showed increased TSP1 immunostaining in cell strains with N700S compared to wild-type TM cells. Ultrastructural studies showed ECM disorganization and altered collagen type VI distribution in GTM versus NTM cells. CONCLUSIONS: Our results suggest that missense variants in ECM genes may not cause catastrophic changes to the TM, but over many years, subtle changes in ECM may accumulate and cause structural disorganization of the outflow resistance leading to elevated IOP in POAG patients.


Assuntos
Humor Aquoso/metabolismo , DNA/genética , Proteínas da Matriz Extracelular/genética , Glaucoma de Ângulo Aberto/genética , Mutação de Sentido Incorreto , Trombospondina 1/genética , Malha Trabecular/metabolismo , Adulto , Idoso , Western Blotting , Células Cultivadas , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/metabolismo , Feminino , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Linhagem , Trombospondina 1/metabolismo , Malha Trabecular/citologia
16.
Blood Adv ; 6(8): 2557-2577, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34979560

RESUMO

Barth syndrome is an inherited X-linked disorder that leads to cardiomyopathy, skeletal myopathy, and neutropenia. These symptoms result from the loss of function of the enzyme TAFAZZIN, a transacylase located in the inner mitochondrial membrane that is responsible for the final steps of cardiolipin production. The link between defective cardiolipin maturation and neutropenia remains unclear. To address potential mechanisms of neutropenia, we examined myeloid progenitor development within the fetal liver of TAFAZZIN knockout (KO) animals as well as within the adult bone marrow of wild-type recipients transplanted with TAFAZZIN-KO hematopoietic stem cells. We also used the ER-Hoxb8 system (estrogen receptor fused to Hoxb8) of conditional immortalization to establish a new murine model system for the ex vivo study of TAFAZZIN-deficient neutrophils. The TAFAZZIN-KO cells demonstrated the expected dramatic differences in cardiolipin maturation that result from a lack of TAFAZZIN enzyme activity. Contrary to our hypothesis, we did not identify any significant differences in neutrophil development or neutrophil function across a variety of assays including phagocytosis and the production of cytokines or reactive oxygen species. However, transcriptomic analysis of the TAFAZZIN-deficient neutrophil progenitors demonstrated an upregulation of markers of endoplasmic reticulum stress and confirmatory testing demonstrated that the TAFAZZIN-deficient cells had increased sensitivity to certain ER stress-mediated and non-ER stress-mediated triggers of apoptosis. Although the link between increased sensitivity to apoptosis and the variably penetrant neutropenia phenotype seen in some patients with Barth syndrome remains to be clarified, our studies and new model system set a foundation for further investigation.


Assuntos
Aciltransferases/metabolismo , Síndrome de Barth , Neutropenia , Animais , Animais Geneticamente Modificados , Apoptose , Síndrome de Barth/genética , Cardiolipinas , Modelos Animais de Doenças , Humanos , Camundongos , Receptores de Estrogênio , Fatores de Transcrição/genética
17.
Nat Med ; 28(4): 780-788, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347281

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a lifelong genodermatosis associated with blistering, wounding, and scarring caused by mutations in COL7A1, the gene encoding the anchoring fibril component, collagen VII (C7). Here, we evaluated beremagene geperpavec (B-VEC), an engineered, non-replicating COL7A1 containing herpes simplex virus type 1 (HSV-1) vector, to treat RDEB skin. B-VEC restored C7 expression in RDEB keratinocytes, fibroblasts, RDEB mice and human RDEB xenografts. Subsequently, a randomized, placebo-controlled, phase 1 and 2 clinical trial (NCT03536143) evaluated matched wounds from nine RDEB patients receiving topical B-VEC or placebo repeatedly over 12 weeks. No grade 2 or above B-VEC-related adverse events or vector shedding or tissue-bound skin immunoreactants were noted. HSV-1 and C7 antibodies sometimes presented at baseline or increased after B-VEC treatment without an apparent impact on safety or efficacy. Primary and secondary objectives of C7 expression, anchoring fibril assembly, wound surface area reduction, duration of wound closure, and time to wound closure following B-VEC treatment were met. A patient-reported pain-severity secondary outcome was not assessed given the small proportion of wounds treated. A global assessment secondary endpoint was not pursued due to redundancy with regard to other endpoints. These studies show that B-VEC is an easily administered, safely tolerated, topical molecular corrective therapy promoting wound healing in patients with RDEB.


Assuntos
Epidermólise Bolhosa Distrófica , Animais , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética , Humanos , Queratinócitos/metabolismo , Camundongos , Pele/metabolismo
18.
Stem Cells Dev ; 30(11): 601-609, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757300

RESUMO

An efficient musculoskeletal system depends on the precise assembly and coordinated growth and function of muscles, skeleton, and tendons. However, the mechanisms that drive integrated musculoskeletal development and coordinated growth and differentiation of each of these tissues are still being uncovered. Epigenetic modifiers have emerged as critical regulators of cell fate differentiation, but so far almost nothing is known about their roles in tendon biology. Previous studies have shown that epigenetic modifications driven by Enhancer of zeste homolog 2 (EZH2), a major histone methyltransferase, have significant roles in vertebrate development including skeletal patterning and bone formation. We now find that targeting Ezh2 through the limb mesenchyme also has significant effects on tendon and muscle patterning, likely reflecting the essential roles of early mesenchymal cues mediated by Ezh2 for coordinated patterning and development of all tissues of the musculoskeletal system. Conversely, loss of Ezh2 in the tendon cells did not disrupt overall tendon structure or collagen organization suggesting that tendon differentiation and maturation are independent of Ezh2 signaling.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Osteogênese , Diferenciação Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Mesoderma , Osteogênese/genética , Tendões
19.
Stem Cell Reports ; 16(12): 2942-2957, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34822771

RESUMO

Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFß) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFß signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFß signaling in cell recruitment, providing insights that may support improvements in tendon repair.


Assuntos
Transdução de Sinais , Células-Tronco/metabolismo , Tendões/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Clonais , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Tendões/ultraestrutura , Fatores de Tempo
20.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA